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Abstract:  

The inverse problem (IP) of the differential equations focusses for determining an unknown parameter(s) or a 

function. However, the IP of the fractional partial differential equations (FPDEs) problem plays a big role in 

engineering and applied science. Accordingly, the fractional differential equations (FDEs) have the significant 

rule in the mathematical modeling of science and engineering. As well as, finding the solutions of the FPDEs is 

a significant subject and a wide field. The objectives of this article is to study the method of solutions of the IP 

for determining unknown parameters or functions of the problem of FPDEs by using the definition of α-fractional 

derivative transform which is converted a FPDEs to a partial differential equation (PDE) and then, we can use the 

method of lines (MOL) with finite difference method for solving a quasi-linear PDE by converted it to an 

ordinary-differential equations (ODEs) system. The characteristic of α-fractional derivative transform is very 

appropriate, significant, and powerful for solving the problems of FPDEs. Additionally, the useful properties of 

the definition of α-fractional derivative transform are used in converting the quasi-linear FPDEs to a quasi-linear 

PDE. Hence, it is converted to a system of ODEs by using the MOL and finite difference formulas. Some 

implementations of inverse problems of the FPDEs are solved using the proposed method and then, they have 

compared with the numerical solutions. The test implementations showed that the two approximated solutions 

using the proposed method are identical. Hence, the algorithm of the proposed method proved to be efficient and 

accurate.  
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 الملخص 

من المعادلات   IPتلعب  ومع ذلك،  الدالة  المعلمة )المعلمات( أو    ( للمعادلات التفاضلية على تحديد المجهولIPالعكسية )  سألةتركز الم

الجزئية   وبناء على ذلك فإنFPDEs)  الكسرية التفاضلية  التطبيقية.  والعلوم  الهندسة  في  الكسرية    ( دورًا كبيرًا  التفاضلية  المعادلات 

(FDEs)    للعلوم والهندسة. بالإضافة إلى ذلك، يعد إيجاد حلول لـ    مهمة في النمذجة الرياضية  بقاعدةتتمتعFPDEs  موضوع    أمرًا مهمًا

  باستخدام  FPDEsلتحديد المعلمات أو الوظائف غير المعروفة لمشكلة    IP  أهداف هذه المقالة هي دراسة طريقة حلول   ان  واسع.ومجال  

( ومن ثم يمكننا استخدام طريقة PDEالمعادلة التفاضلية )  إلى جزئي  FPDEsوالذي يتم تحويل    αتعريف تحويل المشتق الكسري  

 تفاضلية اعتيادية  نظام معادلات  شبه الخطي عن طريق تحويله إلى  PDEطريقة الفرق لحل    ( ذات النهاية المحدودةMOLالخطوط ) 

(ODEs  إن خاصية تحويل المشتق الكسري .)α   مناسبة وهامة وقوية لحل مشاكل  و  مميزة للغايةFPDEs،يتم   . بالإضافة إلى ذلك

شبه الخطية. ومن ثم يتم   PDEشبه الخطية إلى    FPDEs  في تحويل  αاستخدام الخصائص المفيدة لتعريف تحويل المشتق الكسري  

https://aaasjournals.com/index.php/ajapas/index
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باستخدام  FPDEsتم حل  والفرق المحدود. بعض تطبيقات المشاكل العكسية  MOLباستخدام صيغ  بواسطة ODEsتحويله إلى نظام 

باستخدام الطريقة المقترحة    الحلول العددية. وأظهرت تطبيقات الاختبار أن الحلين التقريبيين  الطريقة المقترحة ومن ثم مقارنتها مع

 لتكون فعالة ودقيقة. متطابقة. ومن هنا أثبتت خوارزمية الطريقة المقترحة

 

  .FPDE؛  PDEs؛ ODEs .IP؛ نظام αالعكسية، مشتقة كسورية  المسألة المفتاحية:الكلمات 

Introduction 

           In the fields of engineering and applied sciences such as mathematics, physics, control, mathematical 

modeling, optimization, chemical engineering, and medical engineering, an inverse problem (IP) of differential 

equations is an essential hot problem where the objective of the topic of this research of this topic is to determine 

the source as parameters or functions which are underlying system that originated a specific collection of 

observations or consequences.  The IP involves of the determining the values of the parameters or the functions 

which describing the system of the study from the actual results of specific cause evaluations.  Furthermore, 

because the features of the sources in real problems are never set and are necessarily constantly invention in this 

particular case additionally depends on measurement-based indirectly observable information. In contrast, IP 

starts with a known cause and asks the researcher to determine what effects it will have. To ascertain the conditions 

of the research difficulty, some academics have studied inverse problems since exactly fifty years ago. However, 

inverse challenges of determining source terms since the 1970s are extensively researched since sources attributes 

are rarely identified in practical applications whereas the heat equation's inverse problem is therefore recognizable 

as an inverse control problem, wherein the goal is to identify which parameter or function(s) of source control, at 

any given time, results in the desired temperature at a particular position  𝑥0   in the spatial domain. Although the 

problem's solvability is fairly established. 

Furthermore, in the 20th and 21th centuries, fractional calculus received a lot of interest, especially within the last 

three years. It is frequently employed in the fields of engineering and applied science, as well as in applied and 

pure mathematics. Numerous authors have looked into some FDEs new concepts and definitions. For example, 

they have developed the theory and the applications of FDEs in addition to the methods of solutions for solving 

FDEs and specified some novel concepts in the definitions of fractional derivatives (FDs) [1-5].  

Nonetheless, a number of researchers provided some fresh interpretations of FDs. In light of this, the literature 

overview on FDs and FDE solutions can be introduced for example as follows: Khalil et al. [6] presented a novel 

FD's definition, and Mechee et al. [7] provided an important definition of the α-fractional integral and the α-FD 

of real functions. Furthermore, Zheng et al. defined the Caputo type for FD and investigated its characteristics [8]. 

In addition to, the conformable fractional differential transform (CFDT) and its application were initially 

introduced by Unal and Gan [9]. Nevertheless, the second-order conjugate boundary value problems (BVPs) have 

been modified by Anderson and Avery using the new definition of FD [10], and Khalil and Hammad have looked 

at Legendre conformable FDEs and their basic features [11]. Likewise, Abdel Hakim [12] verified the existence 

of the conformable fractional derivative.  Khalil and Abu-Hammad investigated precisely the response to the heat-

conformable FDE.  Additionally, Abdel Jawad proposed the notion of the conformable FD after establishing the 

basic ideas of FDs [13]. Furthermore, the conformable FD features were offered to Ortega and Rosales [14], 

Similar to the IPs, the IP for recognizing an unknown heat-source parameter or function in the heat conduction 

equation has been the topic of numerous investigations [15–22].  As a result, Cannon, Duchateau, and Fatullayev 

investigated the inverse source problem with additional data for f = f(u) [15, 16]. In a similar fashion, the problems 

of determining the source function in a parabolic equation and nonhomogeneous heat equation have been 

introduced by [17-18]. As a consequence, several numerical techniques for solving the inverse source problem, 

have been presented [19–26].   

The current study proposes that the heat source only depends on time, and the overdetermination can be credited 

to the transient temperature measurement obtained from a single thermocouple that is positioned within the heat 

conductor. For this purpose, we will solve the inverse problem which include FPDE using some of the 

characteristics of α-fractional derivative transform which converted to PDE. Furthermore, we apply the MOL 

technique for solve PDE in this inverted source problem in this paper. Hence, MOL with finite difference method 

have been companied for solving a quasi-linear PDE by converted it to a system of ODEs. Therefore, a quasi-

linear PDE was successfully solved through the use of MOL and the finite differences approach, which converts 

it into a system of ODEs. 

 

Background of Fractional Derivatives 

Some concepts and definitions relevant to this subject have been introduced in this section. The classical and 

modern definitions of FDs of the function f(τ) have introduced. 

Firstly, the classical of Riemann-Liouville fractional derivative of the function f(τ) [1] is defined in the following 

definition. 

Definition 1: Riemann-Liouville Derivative 
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Riemann-Liouville Derivative [1] defined the classical fractional Riemann-Liouville integral operator of left 

side with order α > 0 as follows: 

Da
τ
α ∅(γ) =

1

Γ(m − α)

dm

dtm
∫

 ∅(m)(γ)

(γ − μ)m−α−1

γ

a

dμ,                                                                                                            (1) 

where the fractional number α satisfy the inequality m - 1 ≤ α < m where m∈ 𝑁 and the function ∅: [a, ∞) → ℛ 

is continuous in its domain. 

Secondly, two modern fractional derivatives of the function f(τ) [6-7] are defined in the following two 

definitions: 

Definition 2: Comfortable Fractional Drivative 

Khalil et. al [6] introduced the comfortable FD of the function  ∅(γ) ∶  [a, ∞) → ℛ.  as follows: 

Tα( ∅(γ)) =  ∅(α)(γ) = lim
ϵ→0

 ∅(γ + ϵγ 1−α) −  ∅(γ)

2ϵ
.                                                                                                      (2) 

for α ∈ (0,1]. 
Definition 3: α-Fractional Drivative 

Mechee et al. [7] has introduced   α-FD of the function f(τ)  is as follows: 

Tα(∅(γ)) = ∅(α)(γ) = lim
ϵ→0

 ∅(γ + ϵγ 1−α) −  ∅(γ − ϵγ 1−α)

2ϵ
.                                                                                       (3) 

Theorem 1 [6] 

If g ∶ [a, ∞) → ℛ is a real function in the domain Iα then, the following property of  α-fractional derivative of 

this function g is obtained from the Definitions 2 and 3 of α-fractional derivative for the function g(τ):  

 

Tα(g(τ)) = g(α)(τ) = τ1−α g′(τ).                                                                                                                        (4) 

Proposition 1: Let 𝑢(τ, x) be differential function in the domain  ℌ ⊏ ℝ × ℝ 

Then, 
𝜕𝛼𝑢(τ,𝑥)

𝜕τ𝛼 = τ1−α uτ(τ, x)  and 
𝜕𝛼𝑢(τ,𝑥)

𝜕x𝛼 = x1−α ux(τ, x). 

Proof 

From the definitions in the Equation (2) and (3), we get the following 

 Tα(∅(τ)) = ∅(α)(τ) = τ 1−α  ∅′(τ).                                                                                      

However, we can convert the fractional partial derivative to a partial derivative as follows: 

𝜕𝛼𝑢(𝜏, 𝑥)

𝜕𝜏𝛼
= 𝑙𝑖𝑚

𝜖→0

𝑢(𝜏 + 𝜖𝜏 1−𝛼 , 𝑥) − 𝑢(𝜏, 𝑥)

𝜖
 , 

                                                        = 𝑙𝑖𝑚
                    𝜖→0

𝑢(𝜏, 𝑥) + 𝜖𝜏 1−𝛼𝑢𝜏(𝜏, 𝑥) +
(𝜖𝜏 1−𝛼)2

2!
𝑢𝜏𝜏(𝜏, 𝑥) + ⋯ − 𝑢(𝜏, 𝑥)

𝜖
. 

Then, 
𝜕𝛼𝑢(τ,𝑥)

𝜕τ𝛼 = τ1−α uτ(τ, x).                                                                                                                                    

In the same way, we can prove the second relation 

𝜕𝛼𝑢(τ, 𝑥)

𝜕x𝛼
= x1−α ux(τ, x).                                                                                                                                                     (5) 

 

Fractional Diffusion Equation 

In this section, fractional diffusion equations have been introduced 

Fractional Quasi-Linear FPDE 
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The special quasi-linear second-order FPDE has the following form 

𝜕𝛼𝑤(t, 𝜉)

𝜕t𝛼
= ∅ (𝑤(t, 𝜉),

𝜕𝑤(t, 𝜉)

𝜕𝜉
,
𝜕2𝑤(t, 𝜉)

𝜕𝜉2
) ,      0 < 𝜉 < 𝑙, t > 0,                                                                             (6) 

with the initial-condition (IC)  

w(0, 𝜉) = f(𝜉), for 0 < 𝜉 < 𝑙,                                                                                                                                               (7)   

and the Dirichlet-boundary conditions (DBCs) 

 w(t, 0) =  w(τ, l) = 0 for t > 0.                                                                                                                                          (8)  

 

Fractional Non-Homogenous Heat Equation  

In special case consider a nonhomogeneous variable-coefficient fractional heat equation in one dimension: 

𝜕𝛼𝑤(τ, 𝜉)

𝜕τ𝛼
= 𝛽2 τ α−1

𝜕2𝑤(τ, 𝜉)

𝜕𝜉2
+ 𝑓(τ), 0 < 𝜉 < 𝑙, τ > 0,                                                                           (9) 

with the IC and DBCs in Equations (7) and (8)  

The FPDE in Equation (9) is non homogenous fractional heat equation with variable coefficient. 

 

Proposed Method of Converting the FPDEs to PDEs Using α-Fractional Derivative Transform 

 From the proposition 1, the FPDE in Equation (6) is converted to the FPDEs 

wτ(τ, 𝑥) = τ α−1 ∅ (𝑤(τ, 𝜉),
𝜕𝑢(τ,𝜉)

𝜕𝜉
,

𝜕2𝑢(τ,𝜉)

𝜕𝜉2 ) ,    0 < 𝑥 < 𝑙, τ > 0,                                                                            (10)  

In the same way Equation (9) is converted to 

wτ(τ, 𝑥) = 𝛽2  
𝜕2𝑤(τ,𝑥)

𝜕𝑥2 + 𝐹(τ),                                                                                                                                           (11)  

where 𝐹(τ) = τ α−1𝑓(τ). Equation (11) is transformed into the following homogenous heat equation by   the 

assumption 𝑣(τ, x)  =  𝑤(τ, x)  − 𝑟(τ) where  𝑟(τ) = ∫ 𝐹(τ) 𝑑τ, we get the following heat equation 

𝑣τ(τ, 𝑥) = 𝛽2  
𝜕2𝑣(𝑡, 𝑥)

𝜕𝑥2
, (τ, x)  ∈  (0, 𝑇] × (0, 1),                                                                                                (12) 

with the IC 

𝑣(0, 𝜉)  =  f(𝜉)  − 𝑟(0) for 0 < 𝜉 < 𝑙,                                                                                                                              (13)   

and the DBCs 

 v(τ, 0) =  v(τ, l) = 𝑟(τ) for τ > 0.                                                                                                                                   (14)  

 

Formulation of Inverse Problem of FPDEs 
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The following heat equation explains the diffusion, motion, and conduction of natural materials: 

wτ(𝑥, τ) = 𝛽2 ∆2w(𝑥, τ) + 𝑓(𝑥, τ, w), (𝑥, τ) ∈  𝛺 ×  (0, T], 
subject to the IC  

                                           w(x, 0) = 𝑤0(x), 0 ≤ 𝑥 ≤ 1 

and the BCs 

                                           w(0, τ) = 𝑔0(τ),   
                                                 w(1, τ) = 𝑔1(τ), 0 < τ ≤ 𝑇 

and the over specified condition 

                                            w(𝑥0, τ) = h(τ).  0 < τ ≤ 𝑇 

where 𝑥0  ∈  (0, 1)  indicates a thermocouple's internal position that records temperature and the functions 𝑤0(𝑥),
𝑔0(τ), 𝑔1(τ)  and h(τ) are given and satisfying the following compatibility conditions    𝑤0(τ) = 𝑔0(τ),  𝑤𝑛(τ) =
𝑔1(τ), 𝑤(𝑥0, τ) = ℎ(τ), and w(x, τ) with f(τ ) are unknown functions, where the state variable is represented by 

w(x, τ) and 𝛽 = the diffusion coefficient. Also, Ω is a bounded domain in 𝑅𝑑, and f refers to physical laws, or 

phrases that come from sources. 

In this paper, we examine a one-dimensional time-dependent problem where the source is  

f (x, τ;  u) = f(τ) depends on time only for the quasi-linear FPDEs in Equation (9) with the IC and BCs in 

Equations (7)-(8). In special case consider a fractional-order heat equation in one dimension Equation (9) is 

transformed into the Equation (12) with the IC and BCs in Equations (13)-(14) and the over specification at a 

point 𝑥0:𝑣(𝑥0, τ) = ℎ(τ) − 𝑟(τ), 0 ≤ τ ≤ 𝑇 where the functions 𝑤(𝑥, τ) and 𝑓(τ) are unknown functions 

satisfying the compatibility conditions. 

 

Proposed Method 

For solving the quasi-linear FPDE in Equation (9) with the IC and DBCs in Equations (7) and (8). The 

proposed method is converted this equation to a PDE in Equation (12) with the IC and DBCs in Equations 

(13)-(14) and then, this PDE solved by combining the MOL with the finite difference method. The 

following steps of the algorithm should be do. 

___________________________________________________________________________________ 

Proposed Algorithm  

The algorithm of the proposed method has the following steps: 

1. Convert the FPDE in Equation (9) with its ICs and BCs in Equations (7) and (8) respectively to the heat 

equation in Equation (12) with the IC and DBCs in Equations (13)-(14) respectively by α-fractional 

derivative transform. 

2. Use the MOL method with finite difference method to convert to Heat equation in Equation (12) to 

system of ODEs with the IC and BCs in Equation (13) and (14), and then, use a numerical method for 

solving this system as in steps 3-7.  

3. Divide the domain of the problem in the variable x in [0, l] by n subinterval with the norm of 

partition ℎ =
𝑙

𝑛
 and in the variable τ in [0, T] by m subinterval with the norm of partition  𝑘 =

𝑇

𝑚
. 

4. Do steps 5-7 while 1 ≤ i ≤ m. 

5. Put instead the point v (τ, 𝑥) by 𝑣𝑖𝑗 = (τ𝑖 , 𝑥𝑗) of the PDE in Equation (12) for i=1, 2, …, m and j=0,1, 

2, …, n. 

6. Fix τ =τ𝑖 at the left side of Equation (12) and put the formulas of finite difference in the derivatives in 

the right side which converting the PDE in Equation (12) to following system of ODEs: 

 v𝑖
′(τ𝑗) = τ𝑗  α−1 ∅(𝑣𝑖−2, 𝑣𝑖−1, 𝑣𝑖 , 𝑣𝑖+1, 𝑣𝑖+2),                                                                                         (15)                      

with the following IC, and DBCs: 

𝑣0𝑗 = 𝑣(0, 𝑥𝑗) = f(𝑥𝑗) − 𝑟(0) ; 

and 

 𝑣𝑗0 = 𝑣(τ𝑗, 0) =  𝑣𝑗𝑛 = 𝑣(τ𝑗 , 1) = 𝑟(τ𝑗),   1 ≤  j ≤  m,                                                                  (16) 

respectively.  
7. Solve the system of ODEs of first-order in Equation (15) with IC and B. Cs in Equation (16) using the 

RK-type method.  

In general, this algorithm can generalize for solving a FPDE of nth-order with I.Cs. and B.Cs.  

 __________________________________________________________________________________________ 
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Implementation: 

Some examples which used to prove the efficient of the proposed method have been implemented in this 

section. 

Numerical Examples 

Using the proposed approach for three examples of testing, we provide and discuss numerical results in this 

section. T=1 has been used in these examples. The current approach is extremely successful according to the 

results. 

 

Example 1: Consider the following inverse problem of FPDE of 𝛼-order where 𝛼 =
1

2
 . 

𝜕
1
2𝑢(τ, 𝑥)

𝜕τ
1
2

=  𝛽2√τ 
𝜕2𝑢(τ, 𝑥)

𝜕𝑥2
+  f(τ), 0 < 𝑥 < 𝑙,   τ > 0,                                                                                    (17) 

With the input data  

IC                                                      u(x, 0) = 𝑢0(x) = sin(π x),                                     0 < 𝑥 < 𝑙. 

BCs                                                   u(0, t) = 𝑔0(τ) =  u(1, τ) = 𝑔1(τ) = τ2,            0 < τ ≤ 𝑇. 

and the over specified condition: u(𝑥0, τ) = h(τ) = 𝑒−𝜋2𝑡  sin(π 𝑥0) + τ2,       0 < τ ≤ 𝑇,   

and 𝛽 = 1, 𝑤here the functions 𝑢0(x),  𝑔0(τ),  𝑔1(τ) and h(τ)  are known functions but u(x, τ)  and by f(τ)  are 

unknown functions. The inverse problem (17) has the unique solution given by f(τ) = 2τ. 

Example 2: Consider the following FPDE of 𝛼-order where 𝛼 =
1

4
 . 

𝜕
1
4𝑢(τ, 𝑥)

𝜕τ
1
4

= 𝛽2 √τ34
 
𝜕𝑢(τ, 𝑥)

𝜕𝑥
+ 2τ

7
4, 0 < 𝑥 < 𝑙,   τ > 0,                                                                   (18) 

IC         u(x, 0) = 𝑢0(x) = 1 − 𝑒𝑥 ,     0 < 𝑥 < 𝑙. 
BCs     u(0, τ) = 𝑔0(τ) = τ2+1 − 𝑒−τ, u(1, τ) = 𝑔1(τ) = τ2+1 − 𝑒1−τ, 0 < τ ≤ 𝑇. 
and the over specified condition u(𝑥0, τ) = h(τ) = τ2+1 − 𝑒𝑥0−τ,   0 < τ ≤ 𝑇 𝑎𝑛𝑑 𝛽 = 1, 
where the functions 𝑢0(x),  𝑔0(τ),  𝑔1(τ) and h(τ)  are known functions but u(x, τ)  and f(τ)  are unknown 

functions. The inverse problem (18) has the unique solution given by f(τ) = 2τ. 

Example 3: Consider the following FPDE of 𝛼-order where 𝛼 =
3

4
 . 

𝜕
3
4𝑢(τ, 𝑥)

𝜕τ
3
4

= 𝛽2 √τ
4    

 
𝜕𝑢(τ, 𝑥)

𝜕𝑥
, 0 < 𝑥 < 𝑙,   τ > 0,                                                                              (19) 

With the input data 𝛽 = 1 

IC                                            u(x, 0) = 𝑢0(x) = 𝑒−2x,                                                  0 < 𝑥 < 𝑙. 
BCs                                         u(0, τ) = 𝑔0(τ) = 𝑒2τ, u(1, τ) = 𝑔1(τ) = 𝑒2(1−x), 0 < τ ≤ 𝑇. 
and the over specified condition u(𝑥0, τ) = h(τ) = 𝑒2(τ−𝑥0),                                 0 < τ ≤ 𝑇. 

and 𝛽 = 1, where the functions 𝑢0(x),  𝑔0(τ),  𝑔1(τ) and h(τ)  are known functions but u(x, τ)  and f(τ)  are 

unknown functions. The inverse problem (19) has the unique solution given by f(τ) = 0. 

__________________________________________________________________________________________

Discussion and Conclusion 

         The proposed method converts the inverse problem of FPDE to an inverse problem of PDE by using α-

fractional derivative transform and then, this PDF converts to a system of ODEs by combining MOL with finite 

difference formulas. This system of ODEs can be solved analytically or numerically. The numerical approach is 

used for solving this system of ODEs is the classical numerical RK method. This approach is used for solving 

three test problems, showing that they are agree well with the solutions. These implementations show the accuracy 

and efficiency of this approach. Accordingly, the approximated solutions in the Examples 1, 2 and 3 are calculated 
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by using the proposed method by compound the MOL method with finite difference formulas and, the numerical 

RK methods of fourth and fifth-order. Meanwhile, the numerical solutions of these three examples are compared 

and plotted in Figure 1 for different three cases of 𝜏 for each example. Consequently, from the numerical 

comparisons for the numerical solutions of the FPDEs for Examples 1-3 in Figure 1, we can conclude the powerful 

and efficiency of the proposed α-FD method. 

 

𝐴1 

 

𝐵1 

 

𝐶1 

 

 

𝐴2 

 

𝐵2 

 

 

𝐶2 

 

𝐴3 

 

𝐵3 

 

𝐶3 

Figure 1: A Numerical Comparison of the Solutions of Example 1:((A1) τ =  0.1, (A2) τ =
 0.5 and (A3) τ =  0.9), Example 2:((B1) τ =  0.1, B2) τ =  0.5 and (B3) τ =  0.9), and Example 3: 

((C1) τ =  0.1, (C2) τ =  0.5 and (C3) τ =  0.9) Using MOL with RK Methods of Fourth- and Fifth-order. 
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