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Abstract:  

The purpose of this research is to explore the properties of w-open sets and extend the concepts of interior and 

closure operators through these sets. Furthermore, we define new classes of functions in topological spaces, such 

as w-continuous, w-irresolute, w-open, and w-closed functions, and analyzing their characteristics and the 

relationships between them. 

 

Keywords: w-open (closed) set, α-continuous function, semi-continuous function, pre-continuous function, 

 κ-irresolute functions, for κ∈{α,semi,pre}. 

 الملخص 

النمط   من  المفتوحة  للمجموعات  الخواص  بعض  ودراسة  تقديم  هو  البحث  هذا  من  من   wالهدف  النمط  هذا  واستخدام 

الغلاقة. ونعرف صنف جديد من الدوال، تسمى الدوال المستمرة من النمط   ومؤثرالمجموعات لتعميم مفهوم مؤثر الداخلية  

w  والدوال الغير حاسمة من النمطw  والدوال المفتوحة من النمطw  والدوال المغلقة من النمطw  في الفضاءات التبولوجية

 مع بعض الخواص والعلاقات التي تربط بينهم. 

 

النمط    الكلمات المفتاحية: المفتوحة)المغلقة( من  النمط  wالمجموعة  الدوال المستمرة من   ،α النمط الدوال المستمرة من   ،

semi،  الدوال المستمرة من النمطpre،  الدوال غير الحاسمة من النمطκ  حيث∈κ {α,semi,pre}. 

Introduction 

The concept of open sets has undergone significant developments since the 1960s. Levine [1] extended this 

concept in 1963 by introducing semi-open sets. Later, Njastad [2] proposed a new class of generalized open sets, 

termed α-open sets, which lie between open and semi-open sets. During the early 1980s, Mashhour [3] studied 

preopen sets, while Abd El-Monsef [4] introduced β-open sets. In 1996, Andrijević [5] explored the idea of b-

open sets. 

In 2003, Pugh [6] introduced the definition of somewhere dense sets, while in 2022, K. Mira and M. Tarjam [7] 

presented w-open sets, accompanied by some of their properties. 

The generalized open sets are often defined using interior and closure operators, and their study has attracted 

growing interest in the field of topology. Functions, particularly continuous ones, play a central role in 

mathematics. Over the years, various generalizations of continuous functions have emerged, such as α-continuous 

functions [12, 17], semi-continuity [1], pre-continuity [3], irresolute functions [11], α-irresoluteness [18], and pre-

irresoluteness [15], 𝜅-open (𝜅-closed [12,13,16]) functions [12,14,3], for 𝜅 ∈ {𝛼, sem, pre}. 

This research aims to explore new types of functions, including w-continuous, w-irresolute, w-open, and w-closed 

functions, while examining the relationships between them. 

Throughout this paper, for   𝐴 ⊆ 𝑋, we denote 𝑐𝑙 (𝐴), 𝐼𝑛𝑡 (𝐴) for the closure, interior operator of 𝐴 in 𝑋, 

respectively. 

https://aaasjournals.com/index.php/ajapas/index
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Definition 1.1. If 𝐴 ⊆ 𝑋, then 𝐴 is called:  

1) α-open [2] if 𝐴 ⊆  𝑖𝑛𝑡(𝑐𝑙(𝑖𝑛𝑡(𝐴))).  

2) semi-open [1] if 𝐴 ⊆ 𝑐𝑙(𝑖𝑛𝑡(𝐴)). 

3) pre-open [3] if 𝐴 ⊆  𝑖𝑛𝑡(𝑐𝑙(𝐴)). 

4) b-open [5] if 𝐴 ⊆  𝑖𝑛𝑡(𝑐𝑙(𝐴))  ∪  𝑐𝑙(𝑖𝑛𝑡(𝐴)). 

5) β-open [4] if 𝐴 ⊆  𝑐𝑙(𝑖𝑛𝑡(𝑐𝑙(𝐴))). 

6) somewhere dense [6] if 𝑖𝑛𝑡(𝑐𝑙(𝐴))  ≠  ∅. 

Definition 1.2[7].  A subset 𝐴 ⊆ 𝑋 is called w-open if there is a nonempty open set 𝑈 such that 𝑈 ⊆  𝐴, i.e. 

cl(int(A)) ≠ ∅. The complement of w-open is called w-closed. 

Notation1.3. We write 𝜅(𝜏) for the class of  𝜅-open sets where  𝜅 ∈ {𝛼, semi, pre, β, b, s, w}, 𝑠 and w refer to 

somewhere dense and w-open, respectively. 
 

Corollary 1.4[7]. In (𝑋, 𝜏), the following results hold: 

1) A nonempty open (closed) set is w-open. 

2) A nonempty semi-open set is w-open. 

3) An w-open set is somewhere dense.                       

The following example clarifies that there is no relation among pre(𝜏)  and 𝑤(𝜏). 
 

Example 1.5. Let 𝑋 = {1, 2,3} with 𝜏1 = {𝑋, ∅, {1, 2}} and 𝜏2 = {𝑋, ∅, {1}, {2}, {1, 2}}. Take 𝐴 = {1, 3}, so  𝐴 ∈

pre(𝜏1) but 𝐴 ∉ w(𝜏1) , whereas 𝐴 ∈ w(𝜏2) but A ∉ pre(𝜏2). 

Theorem 1.6[7].  𝐴 ⊆ 𝑋 is w-closed ⟺ 𝐴 ⊆ 𝐹 for some a proper closed subset 𝐹. 
 

Notation 1.7. Generally, the intersection on w(𝜏) is not closed, and the next example explains this. 
 

Example 1.8. let 𝑋 = {1, 2,3} with 𝜏 = {𝑋, ∅ , {1} , {2} , {1, 2}}, and let 𝐴 = {1,3}, 𝐵 = {2,3}, so A, B ∈ w(𝜏)  

whereas 𝐴 ∩ 𝐵 = {3} ∉ w(𝜏) . 

The collection w(𝜏) is closed under the union and the next theorem explains this. 

Theorem 1.9. w(𝜏) forms a supra on 𝑋. 

Proof. If 𝐴𝑖 ∈ w(𝜏), then there exists 𝑢𝑖 ∈ 𝜏 such that 𝑢𝑖 ⊆ 𝐴𝑖, so ∪ 𝑢𝑖 ⊆∪ 𝐴𝑖 and ∪ 𝐴𝑖 ∈ 𝑤(𝜏). 
 

Definition 1.10[9, 10]. A space 𝑋 is ultra-connected if the intersection of any two nonempty closed sets is 

nonempty. Equivalently, 𝑋 is ultra-connected if the closures of distinct points always intersect. 
 

Definition 1.11[9]. A space 𝑋 is hyper-connected if the intersection of any two nonempty open sets is nonempty. 

Equivalently, 𝑋 is hyper-connected if the closure of any open set is the entire space.  
 

Definition 1.12[10]. A space 𝑋 is F-connected if it is both hyper-connected and ultra-connected. So for any F-

connected space X, there is an open subset of X which is contained in all others open sets. 
 

Theorem 1.13[7]. If 𝑋 is F- connected, then 𝑤(𝜏) forms a topology on 𝑋. 

The following diagram shows the relationships between some of famous generalized open set. 
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Definition 1.14. For 𝐴 ⊆ 𝑋, then: 

1) The w- interior of 𝐴 (for short, 𝑖𝑛𝑡𝑤(𝐴)) is the largest w-open set which is contained in 𝐴. 

2) The w-closure of 𝐴 (for short, 𝑐𝑙𝑤(𝐴)) is the smallest w-closed set which containing 𝐴. 
 

Corollary 1.15. For A ⊆ 𝑋 , the following results hold 

1) 𝑖𝑛𝑡(𝐴) ⊆ 𝑖𝑛𝑡𝑤(𝐴) 

2) 𝐴 ⊆ 𝑐𝑙𝑤(𝐴) ⊆ 𝑐𝑙(𝐴). 

Proof. It is clear, using corollary 1.4(1)                                                                                                                  
  

Proposition 1.16. Suppose 𝐴 and 𝐵 are subset of (𝑋, 𝜏). Then: 

1)  𝐴 ∈ 𝑤(𝜏) ⇔ 𝑖𝑛𝑡𝑤(𝐴) = 𝐴. 

2)  𝐴 is w-closed  ⇔ 𝑐𝑙𝑤(𝐴) = 𝐴. 
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3) If 𝐴 ⊆ 𝐵, then 𝑖𝑛𝑡𝑤(𝐴) ⊆ 𝑖𝑛𝑡𝑤(𝐵) and 

𝑐𝑙𝑤(𝐴) ⊆ 𝑐𝑙𝑤(𝐵). 

4) 𝑖𝑛𝑡𝑤(𝐴) ∪ 𝑖𝑛𝑡𝑤(𝐵) ⊆ 𝑖𝑛𝑡𝑤(𝐴 ∪ 𝐵) and  

𝑖𝑛𝑡𝑤(𝐴 ∩ 𝐵) ⊆ 𝑖𝑛𝑡𝑤(𝐴) ∩ 𝑖𝑛𝑡𝑤(𝐵). 

5) 𝑐𝑙𝑤(𝐴 ∩ 𝐵) ⊆ 𝑐𝑙𝑤(𝐴) ∩ 𝑐𝑙𝑤(𝐵) and 

𝑐𝑙𝑤(𝐴) ∪ 𝑐𝑙𝑤(𝐵) ⊆ 𝑐𝑙𝑤(𝐴 ∪ 𝐵). 

Proof. It is clear.                                                                                                                                                      

The equality in the parts (4) and (5) do not hold in general, and the following examples explain this. 
 

Example 1.17. Let 𝑋 = ℝ and let 𝜏 consists of all subsets of ℝ that do not contain 0 or they have finite 

complement. Let 𝐴 = {1,2,3,4}, 𝐵 = {0}, 𝐶 = ℝ\{0}, 𝐷 = {0, 1, 2}. 

1) 𝑖𝑛𝑡𝑤(𝐴) = 𝐴 , 𝑖𝑛𝑡𝑤(𝐵) = ∅, 𝑖𝑛𝑡𝑤(𝐴 ∪ 𝐵) =  𝐴 ∪ 𝐵. 

2) Since 𝑐𝑙(𝐶) = ℝ, so  𝑐𝑙𝑤(𝐶) = ℝ, then 𝑐𝑙𝑤(𝐷) = 𝐷 and 𝑐𝑙𝑤(𝐶 ∩ 𝐷) = 𝐶 ∩ 𝐷.   

Example 1.18. If 𝑋 = {1, 2, 3, 4} with 𝜏 = {𝑋, ∅, {1}, {1, 2}, {3, 4}, {1, 3, 4}}, and let 𝐴 = {1, 4}, 𝐵 = {3, 4}, 𝐶 =

{1} and 𝐷 = {3}, then , 𝐴, 𝐵, 𝐶 and 𝐷𝑐 ∈ 𝑤(𝜏) and so 

1) 𝑖𝑛𝑡𝑤(𝐴) = 𝐴, 𝑖𝑛𝑡𝑤(𝐵) = 𝐵 and 𝑖𝑛𝑡𝑤(𝐴 ∩ 𝐵) = ∅. 

2) 𝑐𝑙𝑤(𝐶) = 𝐶, 𝑐𝑙𝑤(𝐷) = 𝐷 and 𝑐𝑙𝑤(𝐶 ∪ 𝐷) = 𝑋.                                                                                         
 

Theorem 1.19. Every superset of w-open is also an w-open set. 

Proof. For  𝐴 ∈ w(𝜏), and  𝐴 ⊆ 𝐵,  there is an open set 𝑈 in 𝑋 where 𝑈 ⊆ 𝐴 ⊆ 𝐵, so 𝐵 ∈ w(𝜏).                                                                                                                 
 

Theorem 1.20. For (𝑋, 𝜏), we have: 

w(𝜏) = {𝑈 ∪ 𝐴: 𝑈 ∈ 𝜏,  𝐴 ⊆ 𝑋} 

Proof. Since 𝑈 ∪ 𝑖𝑛𝑡(𝐴) ⊆ 𝑈 ∪ 𝐴, so 𝑈 ∪ 𝐴 ∈ w(𝜏). Let 𝐵 ∈ w(𝜏), so there exists 𝑈 ∈ 𝜏 such that 𝑈 ⊆ 𝐵, and  

𝐵 can be written as 𝐵 ∪ 𝑈 where 𝑈 ⊆ B, then 𝑤(𝜏) ⊆ {𝑈 ∪ 𝐴: 𝑈 ∈ 𝜏, 𝐴 ⊆ 𝑋}.                                                     
 

Definition 1.21. A subset 𝐴 ⊆ 𝑋 is called w-dense if 𝑐𝑙𝑤(𝐴) = 𝑋. We write 𝐷𝑤(𝜏) for the class of all w-dense set 

in 𝑋. 
 

Theorem 1.22.  𝐴 ∈ 𝐷𝑤(𝜏) ⟺ 𝐴 ∩ 𝑈 ≠ ∅ for every nonempty 𝑈 ∈ 𝜏.  

Proof. Let 𝐴 ∈ 𝐷𝑤(𝜏) with 𝐴 ∩ 𝑈 = ∅ for some nonempty 𝑈 ∈ 𝜏, so 𝐴 ⊆ 𝑋\𝑈 and by (1.15) and (1.16) 𝑐𝑙𝑤(𝐴) =

𝑋 ⊆ 𝑋\𝑈 and this contradicts 𝑈 ≠ ∅. The other side is clear using (1.20).                                                            
 

Corollary 1.23.  If ⋂ 𝑈𝑖𝑈𝑖∈𝜏 = {𝑎} for some 𝑎 ∈ 𝑋,  then 𝑐𝑙𝑤({𝑎}) = 𝑋. 

Proof. By (1.22), take 𝐴 = {𝑎}. 
 

Theorem 1.24.  𝐴 ⊆ 𝑋 is w-dense ⟺ 𝐴 is dense in 𝑋, i.e. 𝐷𝑤(𝜏) = 𝐷(𝜏).  

Proof. By (1.15), 𝐷𝑤(𝜏) ⊆ 𝐷(𝜏). Now, let 𝐴 ∉ 𝐷𝑤(𝜏), so 𝐴 ∩ 𝑈 = ∅ for some 𝑈 ∈ 𝜏, so 𝐴 ⊆ 𝑋\𝑈 and 𝑐𝑙(𝐴) ⊆

𝑋\𝑈 which shows that 𝐴 ∉ 𝐷(𝜏).                                                                                                                            
 

Theorem 1.25. Every clopen set in X is w-open and w-closed. 

Proof. It is clear.                                                                                                                                                               
 

Corollary 1.26. The operations 𝑖𝑛𝑡𝑤( ) and 𝑐𝑙𝑤( ) are dual to each other, that is, 

1) (𝑖𝑛𝑡𝑤(𝐴))𝑐 = 𝑐𝑙𝑤(𝐴𝑐). 

2) (𝑐𝑙𝑤(𝐴))𝑐 = 𝑖𝑛𝑡𝑤(𝐴𝑐). 

 

2. w-Continues Function 

In this section, we define and explore the notions of w-continuous, w-irresolute, and w-open (w-closed) 

functions within the framework of topological spaces. Additionally, we investigate their fundamental properties 

and provide various characterizations to enhance understanding of these functions. 
Definition 2.1 [8,12,1,3]. A function 𝑓 ∶ (𝑋, 𝜏)  → (𝑌, 𝜎) is said to be  continuous (𝜅-continuous, for 𝜅 ∈
{𝛼, semi, pre})  at 𝑥 ∈ 𝑋 if for each 𝑉 ∈ 𝜎 containing 𝑓(𝑥), there is  𝑈 ∈ 𝜏 (respectively, 𝑈 ∈ 𝜅(𝜏), for 𝜅 ∈
{𝛼, semi, pre}) containing 𝑥 such that 𝑓(𝑈) ⊆ 𝑉. A function 𝑓 is continuous ( 𝜅- continuous ) if it is continuous 

( 𝜅-continuous ) at every 𝑥 ∈ 𝑋. 
 

Theorem 2.2 [8,12,1,3]. A function 𝑓 ∶ (𝑋, 𝜏)  → (𝑌, 𝜎) is  

1)  A continuous function if the inverse image of any open subset of  𝑌 is an open subset in 𝑋. 

2) A  𝜅-continuous function, for 𝜅 ∈ {𝛼, semi, pre}, if the image of any open subset of 𝑌 is an 𝜅-open subset of 

𝑋. 
 

Definition 2.3. A function 𝑓: (𝑋, 𝜏) ⟶ (𝑌, 𝜎) is called w-continuous at x if for every 𝑉 ∈  𝜎 such that 𝑓(𝑥) ∈ 𝑉, 

there exists  𝑈 ∈  𝑤( 𝜏) with 𝑥 ∈ 𝑈 satisfying 𝑓(𝑈) ⊆ 𝑉.  A function 𝑓 is w-continuous if this property holds for 

all 𝑥 ∈ 𝑋. 
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Proposition 2.4. Let 𝑓: (𝑋, 𝜏) ⟶ (𝑌, 𝜎) be a function, then the next statements are equivalent: 

1) 𝑓 is a w-continuous function. 

2) The preimage 𝑓−1(𝑈) of every open subset U of 𝑌 is w-open in 𝑋. 

3) The preimage 𝑓−1(𝐹) of every closed subset F of 𝑌 is w-closed in 𝑋. 

Proof. 1 ⇒ 2 Let 𝑈 be an open set in 𝑌  with 𝑥 ∈ 𝑓−1(𝑈), then 𝑓(𝑥) ∈ 𝑈, and there exists 𝑊 ∈ 𝑤(𝜏) such that 

𝑥 ∈ 𝑊 and 𝑓(𝑊) ⊆ 𝑉, so 𝑊 ⊆ 𝑓−1(𝑉). By (1.19) 𝑓−1(𝑉) ∈ 𝑤(𝜏). 

2 ⇒ 3 Let 𝐹 be a closed set in 𝑌, so 𝑈 = 𝑌\𝐹 is an open set in 𝑌, and so 𝑓−1(𝑌\𝐹) is an w-open set in 𝑋. Since 

𝑓−1(𝑌\𝐹) = 𝑋\𝑓−1(𝐹) , so 𝑓−1(𝐹) is a w-closed set in 𝑋. 

3 ⇒ 1 Let 𝑉 be an open set in 𝑌 containing 𝑓(𝑥), so 𝐹 = 𝑌\𝑉 is a closed set in 𝑌 with 𝑓(𝑥) ∉ 𝐹. By (3) 𝑈 =

𝑋\𝑓−1(𝑉) ∈ w(𝜏) such that  𝑥 ∈ 𝑈 and 𝑓(𝑈) ⊆ 𝑉.                                                                                               
 

Theorem 2.5. Every continuous function is w-continuous. 

Proof. It is obvious, since 𝜏\{∅} ⊆ 𝑤(𝜏).                                                                                                               

The converse of the aforementioned result is not universally true, as demonstrated in the following example. 

Example 2.6. Let 𝑋 = 𝑌 = {1, 2, 3, 4} with  𝜏 = {𝑋, ∅, {1}, {2}, {1, 2}} and 𝜎 = {𝑌, ∅, {1, 2}, {3, 4}}. Define a 

function 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) as the following: 𝑓(1) = 1, 𝑓(2) = 3, 𝑓(3) =2, 𝑓(4) = 4, then 𝑓 is a w-continuous, 

but it is not continuous. 
 

Theorem 2.7.   𝑓: 𝑋 → 𝑌 is a  w-continuous function  ⟺  𝑓(𝑐𝑙𝑤(𝐴)) ⊆ 𝑐𝑙(𝑓(𝐴)). 

Proof. Suppose  𝑓 is a w-continuous function, so 𝑓−1(𝑐𝑙(𝑓(𝐴))) is a w-closed set in 𝑋 which contains 𝐴. Since 

𝑐𝑙𝑤(𝐴) is the smallest w-closed set in X containing 𝐴, therefore 𝑐𝑙𝑤(𝐴) ⊆ 𝑓−1(𝑐𝑙(𝑓(𝐴))) and so 𝑓(𝑐𝑙𝑤(𝐴)) ⊆

𝑐𝑙(𝑓(𝐴)). 

Now let, (𝑐𝑙𝑤(𝐴)) ⊆ 𝑐𝑙(𝑓(𝐴)) and let A=𝑓−1(𝐸) where 𝐸 is a closed set in 𝑌, then 𝑓 (𝑐𝑙𝑤(𝑓−1(E))) ⊆

𝑐𝑙 (𝑓(𝑓−1(𝐸))) = cl(E) = E, so 𝑐𝑙𝑤(𝑓−1(E)) ⊆ 𝑓−1(E), and 𝑓−1(E) is w-closed set in 𝑋. Therefore 𝑓 is w-

continuous.                                                                                                                                                                             
 

Theorem 2.8.    𝑓: 𝑋 → 𝑌 is a w-continuous function ⟺ 𝑖𝑛𝑡(𝑓(𝐴)) ⊆ 𝑓(𝑖𝑛𝑡𝑤(𝐴)). 

Proof. It is clear.                                                                                                                                                                          
 

Theorem 2.9. Let  𝑓: 𝑋 → 𝑌 be a w-continuous function on 𝑋, and let 𝑔: 𝑌 → 𝑍 be a continuous function on 𝑌, 

then the composition 𝑔 ∘ 𝑓 is a w-continuous function on 𝑋. 

Proof. Since g is continuous, so 𝑔−1(𝑉) is an open set in 𝑌 for every open set 𝑉  in 𝑍,  and since 𝑓 is a w-

continuous function, so  𝑓−1(𝑔−1(𝑉)) = (𝑔 ∘ 𝑓)−1(𝑉) is w-open in 𝑋. Therefore 𝑔 ∘ 𝑓 is w-continuous on 𝑋.                 

Theorem 2.10 [12]. If 𝑓 ∶  𝑋 →  𝑌 is 𝛼-continuous, then it is semi-continuous. 

Theorem 2.11. Every semi-continuous is w-continuous. 

Proof. It is obvious, since semi(𝜏)\{∅} ⊆ 𝑤(𝜏).                                                                                                   

The converse of the aforementioned result is not universally true, as demonstrated in the following example. 

Example 2.12. Let 𝑋 = {1, 2, 3, 4}, and let 𝜏 = 𝜎 = {𝑋, ∅, {1}, {2}, {1, 2}{2, 3}{1, 2, 3}}. Define a function 

𝑓: (𝑋, 𝜏) → (𝑋, 𝜎) as follows 𝑓(1) = 𝑓(3) = 1, 𝑓(2) = 𝑓(4) = 2, then 𝑓 is w-continuous. Since 𝑓−1({1}) =
{1, 3} is not semi-open in 𝑋, so 𝑓 is not semi-continuous. 
 

Definition 2.13[11].  𝑓 ∶  𝑋 →  𝑌 is called an irresolute function if 𝑓−1 (𝑉 ) is semi-open in 𝑋 for any semi-open 

set 𝑉 in  𝑌. 
 

Definition 2.14[18, 15].  𝑓 ∶  𝑋 →  𝑌 is called an 𝜅-irresolute function if 𝑓−1 (𝑉 ) is 𝜅-open in 𝑋 for any 𝜅-open 

set 𝑉 in  𝑌,  where 𝜅 ∈ {𝛼, pre}. 
 

Definition 2.15.  𝑓 ∶  𝑋 →  𝑌 is called an w-irresolute function if for every w-open set V⊆Y, the preimage 

𝑓−1 (𝑉 ) is w-open in 𝑋. 

Proposition 2.16. For a function  𝑓 ∶ (𝑋, 𝜏) ⟶ (𝑌, 𝜎) , the following statements are equivalent: 

1) 𝑓 is w-irresolute. 

2) For each 𝑉 ∈ w( 𝜎) containing 𝑓(𝑥),  there exists 𝑈 ∈  𝑤( 𝜏) containing 𝑥 such that 𝑓(𝑈) ⊆  𝑉. 

3) The preimage of every w-closed set in 𝑌 is w-closed in 𝑋. 

Proof. (1 ⇒ 2) Let 𝑉 ∈ 𝑤(𝜎) with 𝑓(𝑥) ∈ 𝑉, since 𝑓 is w-irresolute, so 𝑓−1(𝑉) ∈ 𝑤(𝜏) and 𝑥 ∈ 𝑓−1(𝑉). Put 

𝑈 = 𝑓−1(𝑉), then 𝑥 ∈U and 𝑓(𝑉) ⊆ 𝑈. 

(2 ⇒ 3) Let 𝐸 be a w-closed set in 𝑌 and let 𝑥 ∉ 𝑓−1(𝐸), so 𝑉 = 𝑌\𝐸 is an w-open set in 𝑌, and 𝑓(𝑥) ∈ 𝑉. Then 

there exists 𝑈 ∈  𝑤( 𝜏) containing 𝑥 such that 𝑓(𝑈) ⊆  𝑉, so 𝑈 ⊆ 𝑓−1(𝑌\𝐸) = 𝑋\𝑓−1(𝐸)  is w-open in 𝑋, and 

𝑓−1(𝐸) is w-closed in 𝑋. 

(3 ⇒ 1) It is obvious.                                                                                                                                                      
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Theorem 2.17. 𝑓: 𝑋 → 𝑌 is an w-irresolute function ⟺  𝑓(𝑐𝑙𝑤(𝐴)) ⊆ 𝑐𝑙𝑤(𝑓(𝐴)),  for every 𝐴 ⊆ 𝑋. 

Proof. Assume that 𝑓 is an w-irresolute function , since 𝑐𝑙𝑤(𝑓(𝐴)) is w-closed in 𝑌 containing 𝑓(𝐴), so 

𝑓−1(𝑐𝑙𝑤(𝑓(𝐴))) is w-closed in  𝑋 containing 𝐴, therefore 𝑐𝑙𝑤(𝐴) ⊆ 𝑓−1(𝑐𝑙𝑤(𝑓(𝐴))), and consequently, 

𝑓(𝑐𝑙𝑤(𝐴)) ⊆ 𝑐𝑙𝑤(𝑓(𝐴)). 

On the other side, let 𝑓(𝑐𝑙𝑤(𝐴)) ⊆ 𝑐𝑙𝑤(𝑓(𝐴)) for any 𝐴 ⊆ 𝑋, and let 𝐸 be a w-closed subset of  𝑌, then 

𝑓 (𝑐𝑙𝑤(𝑓−1(E))) ⊆ 𝑐𝑙𝑤 (𝑓(𝑓−1(𝐸))) ⊆ cl𝑤(E) = 𝐸, so 𝑐𝑙𝑤(𝑓−1(F)) ⊆ 𝑓−1(F), and 𝑓−1(E) is w-closed set in 

𝑋. Therefore 𝑓 is w-irresolute.                                                                                                                                                         
 

Theorem 2.18.   𝑓: 𝑋 → 𝑌 is an w-irresolute function ⟺  following condition holds for every  𝐴 ⊆ 𝑌 

𝑐𝑙𝑤(𝑓−1(𝐴)) ⊆ 𝑓−1(𝑐𝑙𝑤(𝐴)). 

Proof.  Assume that 𝑓 is w-irresolute, since 𝑓−1(𝑐𝑙𝑤(𝐴) is w-closed in 𝑋, and 𝑓−1(𝐴) ⊆ 𝑓−1(𝑐𝑙𝑤(𝐴), then 

𝑐𝑙𝑤(𝑓−1(𝐴)) ⊆ 𝑓−1(𝑐𝑙𝑤(𝐴)).                                                                                                     

 Now let, 𝐴 be a w-closed set in 𝑌, then  𝑐𝑙𝑤(𝑓−1(𝐴)) ⊆ 𝑓−1(𝑐𝑙𝑤(𝐴)) = 𝑓−1(𝐴), so 𝑓−1(𝐴) = 𝑐𝑙𝑤(𝑓−1(𝐴)), 

and this shows that 𝑓 is w-irresolute.                                                                                                                                        
 

Theorem 2.19[18]. If 𝑓 ∶  𝑋 →  𝑌 is an 𝛼- irresolute function, then it is 𝛼- continuous. 
 

Theorem 2.20. If 𝑓 ∶  𝑋 →  𝑌 is a continuous function, then it is w-irresolute. 

Proof. Suppose that 𝐴 is w-open in 𝑌, then there is an open set in Y such that 𝑈 ⊆ 𝐴, so 𝑓−1(𝑈) is an open set in 

𝑋 and 𝑓−1(𝑈) ⊆ 𝑓−1(𝐴), hence 𝑓−1(𝐴) is a w-open set in 𝑋.                                                                                                      

The converse of the above theorem is not necessarily true as illustrated by the following example. 

Example 2.21. Let (ℝ, 𝜏) be the usual topology space, and 𝜏∗ = {𝑈 ∪ {0}: 𝑈 ∈ 𝜏},  and let (𝑌, 𝜎) be the sierpinski 

space. i.e. 𝑌 = {0, 1} and 𝜎 = {𝑌, ∅, {0}}. Defined a function 𝑓: (𝑋, 𝜏∗) ⟶ (𝑌, 𝜎) by 𝑓(𝑥) = 0 for rational number 

𝑥 and 𝑓(𝑥) = 1 for irrational number 𝑥. Then 𝑓 is w-irresolute, but it is not continuous.   
 

Theorem 2.22. If 𝑓 ∶  𝑋 →  𝑌 an w-irresolute function, then it is w-continuous. 

Proof. It is obvious, by using (1.4).                                                                                                                             
 

Theorem 2.23.  If 𝑓 ∶  𝑋 →  𝑌 is a w- continuous function, then it is w- irresolute. 

Proof. Suppose that 𝐴 is w-open in 𝑌, then there is an open set V in Y such that 𝑉 ⊆ 𝐴, so 𝑓−1(𝑉) is an w-open 

set in 𝑋 and 𝑓−1(𝑉) ⊆ 𝑓−1(𝐴). By (1.19) 𝑓−1(𝐴) is also w-open in 𝑋 and this shows that 𝑓 is w-irresolute               
 

Remark 2.24. The above results show that the concepts of w- continuity and w- irresoluteness of functions are 

coincided.                                                                                                                         
 

Theorem 2.25. If  𝑓: 𝑋 → 𝑌  and 𝑔: 𝑌 → 𝑍 are w-irresolute functions, then the composition 𝑔 ∘ 𝑓 is also w-

irresolute function. 

Proof. Let 𝐸 be an w-closed set in 𝑍, since 𝑔 is an w-irresolute, then 𝑔−1(𝐸) is an w-closed set in 𝑌 and since 

𝑓 is w-irresolute, so 𝑓−1(𝑔−1(𝐸)) = (𝑔 ∘ 𝑓)−1(𝐸) is w-closed in 𝑋. Thus  𝑔 ∘ 𝑓 is w-irresolute.                             
 

Theorem 2.26. If  𝑓: 𝑋 → 𝑌 is an w-irresolute function, and 𝑔: 𝑌 → 𝑍 is a w-continuous function, then 𝑔 ∘ 𝑓 is w-

continuous. 

Proof. It is obvious.                                                                                                                                                  
 

Definition 2.27[8].  𝑓 ∶  𝑋 →  𝑌 is called an open(closed) function  if 𝑓(𝑈) is open(closed) in 𝑌 for any open set 

𝑈 of 𝑋. 
 

Definition 2.28[12,14,3)].  𝑓 ∶  𝑋 →  𝑌 is called an 𝜅 –open (𝜅 –closed) function if f (𝑈 ) is 𝜅 –open (𝜅 -closed) 

in 𝑌 for any open (closed) set 𝑈 in 𝑋, where 𝜅 ∈ {𝛼, semi, pre}. 
 

Definition 2.29.  𝑓 ∶  𝑋 →  𝑌 is called an w-open(w-closed) function if the image of any open(closed) set in 𝑋 is 

an w-open(w-closed) set in 𝑌. 

 

Theorem 2.30[12,14,3]. If 𝑓 ∶  𝑋 →  𝑌 is an open (closed) function, then it is 𝜅 –open (𝜅 –closed), where 𝜅 ∈{α, 

semi , pre } 

Theorem 2.31[12]. If 𝑓 ∶  𝑋 →  𝑌 is an 𝛼-open(𝛼-closed) function, then it is semi-open (semi-closed). 
 

Theorem 2.32. Let 𝑓 ∶  𝑋 →  𝑌 be a function between two topological spaces. The following statements hold: 

1) If 𝑓 is an open function, then 𝑓 is w-open. 

2) If 𝑓 is a closed function, then 𝑓 is w-closed. 

Proof. It is obvious, by using (1.4).                                                                                                                                                                 
 

Theorem 2.33. If  𝑓: 𝑋 → 𝑌 is a semi-open (semi-closed) function, then 𝑓 is w-open (w-closed). 

Proof. It is obvious, by using (1.4).                                                                                                                         
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Consider a specific example where the conditions for being semi-open are not met, even though the function may 

still be open. This counterexample demonstrates that the converse does not hold in general. 

Example 2.34 Let 𝑋 = {1, 2, 3, 4}, and let 𝜏 = {𝑋, ∅, {1, 2}} and 𝜎 = {𝑋, ∅, {1}, {2, 3}, {1, 2, 3}, {2, 3, 4}}. Defined 

a function 𝑓: (𝑋, 𝜏) → (𝑋, 𝜎) by 𝑓(𝑥) = 𝑥, for all 𝑥 ∈ 𝑋. It is clear that 𝑓 is a w-open ma. 

 Since 𝑓({1, 2}) = {1, 2}, so 𝑓 is not semi-open and so it is not open. 
 

Theorem 2.35. If  𝑓: 𝑋 → 𝑌 is an open(closed) function, and 𝑔: 𝑌 → 𝑍 is an w-open(w-closed) function, then the 

composition 𝑔 ∘ 𝑓 is an w-open(w-closed) function. 

Proof. It is obvious.                                                                                                                                                      
 

Theorem 2.36. Let 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) be a bijective w-closed function, and let 𝑈 be any open subset of 𝑋 such 

that 𝑓−1(𝐴) ⊆ 𝑈 where 𝐴 ⊆ 𝑌, then there is an w-open set 𝑉 ⊆ 𝑌 such that 𝐴 ⊆ 𝑉 and 𝑓−1(𝑉) ⊆ 𝑈. 

Proof. Let 𝑉 = 𝑌\𝑓(𝑋\𝑈), it is clear that V is an w-open set in 𝑌 and it satisfies the required conditions.                

Theorem 2.37 Let 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) be a bijective w-open function, and let 𝐹 be any closed subset of 𝑋 such that 

𝑓−1(𝐴) ⊆ 𝐹 where 𝐴 ⊆ 𝑌, then there exists w-closed set 𝐸 in 𝑌 such that 𝐴 ⊆ 𝐸 and 𝑓−1(𝐸) ⊆ 𝐹. 

Proof. Similar to (2.36), where 𝑉 = 𝑌\𝑓(𝑋\𝐹).                                                                                                          

Theorem 2.38.  𝑓: 𝑋 → 𝑌 is an w-open function ⟺ 𝑓(𝑖𝑛𝑡(𝐴)) ⊆ 𝑖𝑛𝑡𝑤(𝑓(𝐴)), for any 𝐴 ⊆ 𝑋. 

Proof. Assume that 𝑓 is w-open, since 𝑓(𝑖𝑛𝑡(𝐴)) ⊆ 𝑓(𝐴) and 𝑓(𝑖𝑛𝑡(𝐴)) is an w-open set in 𝑌 for any 𝐴 ⊆ 𝑋, 

then 𝑓(𝑖𝑛𝑡(𝐴)) = 𝑖𝑛𝑡𝑤(𝑓(𝑖𝑛𝑡(𝐴))) ⊆ 𝑖𝑛𝑡𝑤𝑓(𝐴). 

On the other side, let 𝑓(𝑖𝑛𝑡(𝐴)) ⊆ 𝑖𝑛𝑡𝑤(𝑓(𝐴)) for any 𝐴 ⊆ 𝑋, and let 𝑉 be an open set in 𝑋, so 𝑓(𝑉) =

𝑓(𝑖𝑛𝑡(𝑉)) ⊆ 𝑖𝑛𝑡𝑤(𝑓(𝑉)), and this shows that 𝑓(𝑉) is w-open in 𝑌. Therefore 𝑓 is w-open.                                    

Theorem 2.39.  𝑓: 𝑋 → 𝑌 is a w-closed function  ⟺ 𝑐𝑙𝑤(𝑓(𝐴)) ⊆ 𝑓(𝑐𝑙(𝐴)) for any 𝐴 ⊆ 𝑋. 

Proof. Assume that 𝑓 is w-closed, since 𝑓(𝐴) ⊆ 𝑓(𝑐𝑙(𝐴)), so 𝑐𝑙𝑤(𝑓(𝐴)) ⊆ 𝑐𝑙𝑤(𝑓(𝑐𝑙(𝐴))) = 𝑓(𝑐𝑙(𝐴)). 

Now let, 𝑐𝑙𝑤(𝑓(𝐴)) ⊆ 𝑓(𝑐𝑙(𝐴)) for any 𝐴 ⊆ 𝑋, and let 𝐹 be a closed subset of 𝑋, then 𝑓(𝐹) ⊆ 𝑐𝑙𝑤(𝑓(𝐹)) ⊆

𝑓(𝑐𝑙(𝐹)) = 𝑓(𝐹), and this shows that 𝑓(𝐹) is a w-closed set in 𝑌. Therefore 𝑓 is w-closed.                                

The next theorem presents the necessary and the sufficient condition for a function to be both w-open and w-

closed simultaneously. 

Theorem 2.40 If 𝑓: 𝑋 → 𝑌 is bijective, then 𝑓 is w-open ⟺ 𝑓 is w-closed. 

Proof. It is obvious.                                                                                                                                                   

Theorem 2.41. Let 𝑔 ∘ 𝑓: 𝑋 → 𝑍 be an w-open(w-closed) function, where  𝑓: 𝑋 → 𝑌 and 𝑔: 𝑌 → 𝑍. Then 

1) If 𝑓 is continuous and bijective, then 𝑔 is w-open(w-closed). 

2) If 𝑔 is w-irresolute, bijective, then 𝑓 is w-open (w-closed). 

Proof.  

1) If  𝑉 is an arbitrary open set in 𝑌, so 𝑓−1(𝑉) is open in 𝑋, and so 𝑔 ∘ 𝑓(𝑓−1(𝑉)) = 𝑔(𝑉) is w-open in 𝑍. 

This implies that 𝑔 is w-open. 

2) If  𝑈 is an arbitrary open set in 𝑋, so 𝑔 ∘ 𝑓(𝑈) is w-open in 𝑍, and so 𝑔−1(𝑔 ∘ 𝑓)(𝑈)) = 𝑓(𝑈) is w-open 

in 𝑌.  This implies that 𝑓 is w-open.                                                                                                                                    

Conclusion 

The research presents a new classification of some generalized open sets, namely w-open (w-closed) sets, and 

establishes new types of functions, such as w-continuous, w-irresolute, w-open, and w-closed functions. It has 

been found that there are significant relationships among these function types, demonstrating the intricate 

relationships that exist when applying these new definitions. This research enhances the understanding of how 

these functions interact, providing insights into their roles in topological spaces and paving the way for further 

investigations in the field of topology. 
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