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Abstract:

In this work, we explore two methods for finding the inverse of polynomial matrices: the Gauss-Jordan inversion
method and the Yujiro Inouye algorithm. The Gauss-Jordan method applies to the inversion of polynomial
matrices and necessitates operations involving polynomials. Notably, when performing these operations, the
resultant inverse may contain polynomials of high degree if common factors in the divisor and dividend
polynomials are not canceled out in the numerators and denominators. Conversely, the Yujiro Inouye algorithm
requires only operations with constant matrices. This algorithm produces an inverse in minimal degree form,
provided that the polynomial matrix being inverted is not of a special form. It has been demonstrated that this
method is faster than existing alternatives. Several examples are provided to illustrate the feasibility of both
methods.
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Introduction

The study of polynomial matrices began in the early 20th century, evolving from traditional methods like Gauss-
Jordan elimination to include the Yujiro Inouye algorithm, which focuses on constant matrices for faster
computations. These methods became crucial in multivariable control systems, where the inversion of polynomial
matrices is essential for determining transfer functions. Ongoing research continues to enhance these techniques
for complex applications. The primary objective of this work is to present two methods for computing the inverse
of polynomial matrices, which frequently arise in the analysis and design of multivariable control systems. For
instance, in the x-domain formulation, a control system is represented by the equations P(x)z = V(x)v andy =
U(x)z, where v is a vector of inputs, y is a vector of outputs and z is a vector of system variables. The matrices
P(x) , V(x) and U(x) are real polynomial matrices. The determination of the transfer function matrix F(x) =
U(x)P~Y(x)V(x) requires the computation of the inverse P~1(x). Also, in the design of multivariable control
systems, the inverse of F(x) is required when F(x) is a square invertible matrix [6]. This paper introduces the
Gauss-Jordan inversion method [7] and the Yujiro Inouye algorithm [10] for computing the inverses of polynomial
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matrices. While the Gauss-Jordan method is commonly employed for the numerical inversion of constant
matrices, it can also be adapted for polynomial matrices. The Yujiro Inouye algorithm is noted for its efficiency
compared to methods in [4] and [5]. This algorithm requires only operations with constant matrices and allows
for the simultaneous determination of the coefficients of the determinants.

1. Basic definitions:
Definition 1.1. A polynomial matrix P(x) is a matrix where each entry is a polynomial in an indeterminate
variable x. So, a general m x n polynomial matrix P(x) can be written as

P(x)=PNXN+PN_1XN_1+"'+P1X+PO (1)

where each P; is a constant m X n matrix. The degree of P(x) is N, assuming that the leading coefficient matrix
Py is non-zero.

Notice, the fundamental operations of addition, subtraction, and multiplication of two or more polynomial
matrices are defined in the same manner as those for scalar matrices.

Definition 1.2. A polynomial matrix P (x) is square matrix if it is n X n matrix, i.e. P; is a constant

n X n matrix.

Definition 1.3[9]. A square polynomial matrix P(x) is called proper if Py is non-singular, and it can be written
as

P(x) = PyP(x), where P(x) = I,x" + Py_;x""'+...+P, and P, = Py*P,,i =0,1,...,N — 1

Definition 1.4[9]. Any square polynomial matrix P(x) can be expressed as

P(x) = Pydiag(x?®) + Py_,diag(x“™) + - + Pydiag (x %)

Where The degree of the ith column of P(x), denoted as d;, is the highest degree of polynomial elements in the
ith column of P(x), N = max(d,,d,,...,d,) , and diag(x%) is the n X n diagonal matrix with diagonal
elements xi. Since the elements of P(x) are polynomial, the columns of P; corresponding to negative powers of
X are zero.
Definition 1.5[9]. A square polynomial matrix P (x) is called column proper if it can be written as
P(x) = PyP(x), where P(x) = I,,diag(x*) + Py_,diag(x%~*) + --- + Pydiag (x%~"), and
P,=pPytP,,i=01,...,N—1.
Definition 1.6[9]. A square polynomial matrix P(x) is called row proper if its transpose PT (x) is column
proper.
Definition 1.7. The trace of a square polynomial matrix P(x), denoted tr(P(x)), is the sum of the elements on
its main diagonal.
Definition 1.8. the determinant of an n X n polynomial matrix P(x) denoted as detP(x) consists of a sum of
n! terms, each of which is the product of n elements of the matrix. By definition, each element of P(x), in (1)
has degree at most N, so when m = n the degree of detP (x) is at most nN.
Definition 1.9. A matrix P(x) is non-singular if detP(x) # 0, and it is singular when detP(x) = 0.
Notes, when Py in (1) is singular the degree of detP (x) is less than nN. When Py, is non-singular then P(x) is
called regular, and P(x) is monic when Py = I,. Also, deduce that if P(x), Q(x) are each n X n and have
degrees N; , N, respectively then the degree of PQ is N; + N, provided at least one of Py , Qp is non-
singular.
Definition 1.10. The inverse of a square matrix P(x) is defined as
-1 __adjP(x)

P (x) - detP(x) (2)
The elements of adjP (x) are minors of P(x), and are therefore polynomials. The inverse of P(x) will not in
general be a polynomial matrix. Hence,
a. If detP(x) is a non-zero scalar it follows that P~ (x) will be a polynomial matrix. in which case P(x), is
called unimodular (or invertible). Since detP(x) is then independent of x its value will be unchanged by
setting x = 0 in (1), so for a unimodular matrix detP(x) = detP,. Clearly, a necessary condition for P(x), to
be unimodular is that detPy = 0, which ensures that there is no term in x™" in detP (x).
b. If detP(x) is polynomial of degree at most nN, then P~ (x) will be a rational matrix (a ratio of two
polynomials).

2. Elementary operations [7]:

I. The rank of a polynomial matrix is equal to the order of the largest square submatrix whose determinant is not
identically zero.

11. Using 'line' to stand for either a row or a column of a polynomial matrix, the elementary operations defined
as:

414 | African Journal of Advanced Pure and Applied Sciences (AJAPAS)



(a) interchange any two lines: L; — L;.

(b) multiply any line by a nonzero scalar: kL;.

(c) add to any line any other line multiplied by an arbitrary polynomial: L; + p(x)L; .

I11. Elementary operations as defined in 2 do not change the rank of a polynomial rank.

V. An elementary matrix is a polynomial matrix obtained by applying a single elementary operation to I,,, and
is unimodular. Specifically, if E is the matrix obtained by applying a row operation to I, then EP is the matrix
obtained by applying the same operation to P.

v. Two polynomial matrices P(x), Q(x). are equivalent if it is possible to pass from one to the other by a
sequence of elementary operations. The equivalence transformation can be represented by

P(x) = A(x)Q(x)B(x), where A(x) and B(x) are unimodular matrices.

3. Finding the inverse of polynomial matrix using row elementary operations:

To calculate the inverse of a polynomial matrix using row elementary operations, the Gauss-Jordan elimination
method can be employed. This technique adapts the conventional methods used for constant matrices. Key
requirements for this approach include that the matrix must be square and of full rank, which guarantees a non-
zero determinant.

Given a square polynomial matrix P (x) , its inverse P~*(x) can be found using Gaussian elimination (or row
reduction) to transform P (x) into the identity matrix I,, while applying the same operations to an identity matrix.
Existence of an inverse:

For an n x n matrix P(x), the following statements are equal.

- P71(x) exist (P(x) is nonsigular).

-rank(P(x)) = n.

Gauss—Jordan
- P(X) > Ay

Compute P~1(x) Using Row Elementary Operations:
Let P(x) be an n x n polynomial matrix. Construct an augmented matrix which is [P (x)| I,,].

where I, is the identity matrix of size n X n. Gauss-Jordan elimination can be used to invert P(x) by the

A Gauss—Jordan A A .
reduction [P(x)| I,] ———— [I,,|P~1(x)]. The only way for this reduction to fail is for a row of zeros to

emerge in an augmented matrix and this occurs if and only if P(x) is a singular matrix.
Example:
Given the polynomial matrix

2
p _(x +2x+2 x+2
) ( x+1 x+2)

the Augmented Matrix is:

(x4 2x4+2 x+2|1 0
Pe) = x+1  x+2l0 1)

i1 X2+ 2x+2 x+2 1 0
R, « Peonta Ri—R, = 0 —(x+2)(x%+ x+1) 2X+1 -1
X242 x+2 xX“+2 x+2
1 0
R2<—x—+1R2 = <x+1 x —x x+1>
2x 0 1| 552 3xe2
2 x2+2x+2  —(x2+2x+2)
X242 x42 X“+2x+2 0 2 2
Ri«Ri+— TR = 0 —) (e xry [ AL A
X242 x+2 X212 242 -1
_r -t
1 1 0 X2+ x+1 X2+ x+1
By le = 0 1 —(x+1) x2+2x+2
(x+2)(x2+ x+1)  (x+2)(x%2+ x+1)
Thus, the inverse is:
1 -1
x4+ x+1 x24+ x+1
-1 _
P = -(x+1) x?+2x+2

x+2)x2+x+1) (x+2)(x2+x+1)
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Hence:

1 1 -1
Plx)=— [ —(x+1) x*+2x+2
* x2+x+1< fc+2) X+ 2 )

A challenge in using row operations is that if common factors are not removed during division, the resulting
inverse may include high-degree polynomials [10].

4. Finding the inverse of polynomial matrix using Yujiro Inouye algorithm [10]:

This algorithm for inverting polynomial matrices builds upon the Souriau-Frame-Faddeev [1,2,3] algorithm by
using only operations with constant matrices, resulting in inverses expressed in minimal degree form. It is more
efficient than previous methods and is particularly suitable for implementation in computer programming,
employing the Gauss-Jordan elimination technique. Compute
P~1(x) Using Yujiro Inouye algorithm: As in definition
1.5 a column proper polynomial matrix A(x) can be reduced as

P(x) = Pydiag(x%) + Py_,diag(x%~1) + -+ + Pydiag (x%~N)

Where Py = I,,, N = max(d,,d,,...,d,) , and the columns of P; corresponding to negative powers of x are
zero. Also, we can represent P(x) = PyP(x), where

P(x) = I, diag(x*) + Py_,diag (x%~) + --- + Pydiag (x%~N),and P, = Py*P; ,i =0,1,...,N — 1.
The determinant of P(x) is a monic polynomial of degree m = d; + d,+... +d:
detP(x) = apx™ + ap_1x™ 4. +a,
1 @min(N,k ,
Where a, = 1, A = ;272711\51(\]—721+p+k)]' tT(PQm_N_k+j), k=1,....m

Since P(x) is column proper then the adjP (x) is row proper, and the ith row of adjP(x) has degree m — d;.
Therefor,

adjP(x) = diag(xm—di)Qm_p + diag(xm—di—l)Qm_p_l + -+ diag (x?~%)Q,

. in(N,k
Where p = min(dy, dy, ... +dy), Qm-p = Ins Qn—p-k = Am-rIn — 272711( )PN—j Qm-N—k+js
k=1,...,m—p, and Q_; = 0. Finally, P~1(x) = %.

Example:
To grasp the algorithm, let's look at the following example.
2
p _(x"t+2x+2 x+2
) ( x+1 x+2 )

The degrees d, = 2, d, = 1. P(x) can be written as

= )5 DG DG DG D6 )

= 1)
P(x)=12(’(‘)2 3)+131((’)‘ 1(_))+130(é x91)
131:P2‘1P1:(11 g)and 130=P2‘1P0:(11 8)
m=d; +d, =3, N=max(d,,d,) =2, and p = min(d,,d,) =1
detP(x) = G3x° + @,x% + d;x + a,
and
-1
adjpe) = (5 2)0+(; a+(% )
a; =1 Q:=1,
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a, = tr(P,Q,) =3 01 =81, = P10, = (—21 2)
a, = % [tr(P,Qy) + 2tr(PyQ,)] = 3 Qo =il = P10y~ PoQ, = (—01 (1))

8y = 2[tr(P, Qo) + 2tr(Py0y)] = 2 Q-1 = Gl = P1Qo — PyQ; = 0

detP(x) = x3 +3x2+3x +2

b = 2 )e+ (o )G D+ D D=6 wvee)
_adjP(x) 1 x+2 0
_detﬁ(x)_x3+3x2+3x+2(—(x+1) x2+x+1)

_ ~ 1 -1 1 x+2 _(x+2)
P~(x) =P = ( )
(x) (x)(O 1) x34+3x24+3x+2\—(x+1) x?+2x+2

P70

1 1 -1
Plx)=———(—(x+1) x*+2x+2
IR §c+2) X+2

Numerically, we obtained the same result using Python, and here is the code:

import numpy as np
import sympy as sp

def polynomial matrix_ inverse(2):
Calculate the inverse of a polynomial matrix using the Yujiro Inouye
algorithm.

Parameters:
P (numpy.ndarray): A sguare matrix of polyncmials.

Returns:
numpy.ndarray: Inverss of the polynomial matrix.

P.shape[0]
reate a matrix for the inverse
np.aye(n, dcyps=object)

SO
I

(e}

sate symbolic variable
sp.symbols ("x'}

o

# Convert the polynomial matrix to a SymPy matrix
P_sym = sp.Matrix(P)

$ Compute the inverse using SymPy

try:
Q_sym = P_sym.iav()

except Exception as e:
print("Error in computing inversa:", e)
return Nons

§ Convert back to a NumPy array
for i in range(n):
for j in range(n):
Q[i, 31 = Q_sym[i, ]I

return Q

§ Example usage

if name == "_main ":

Define the polynomial matrix

sp.symbols ('x'}

np.array([[x**2 + 2*x + 2, X +
x+1, x+ 21])

-~

oo
o

(5]

§ Calculate thes inverse

inverse P = polynomial matrix_inverse(P)
print("Inverse of the polynomial matrix:")
print(inverse P)
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Here is the inverse obtained from executing the code:

Invera= of the polynomizl matzix:

[[1f(=*2 + = + 1} -1/ (=*2 + x + 1]]
[(—= — 1)/ (x*3 + 2*x*2 + 3%x + 2]
(x%2 + 2= + 2]/ (23 + I*=¥2 + 2%k + 21]]
Conclusion

We have explored two key methods for inverting polynomial matrices: the Gauss-Jordan inversion method and
the Yujiro Inouye algorithm. While the Gauss-Jordan method is adaptable for polynomial matrices, it can generate
high-degree polynomials in the inverse if common factors are not properly managed. In contrast, the Yujiro Inouye
algorithm offers a significant advantage by relying solely on constant matrix operations, resulting in inverses in
minimal degree form and demonstrating faster performance than traditional methods. A range of examples was
provided to illustrate both techniques, showcasing their practical utility and effectiveness. These methods serve
as valuable resources for researchers working with polynomial matrices, enhancing our ability to analyze and
design complex systems. Future research could focus on optimizing these algorithms and investigating their
integration into broader computational frameworks, ensuring ongoing progress in this field.
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