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Abstract:  

In this work, we explore two methods for finding the inverse of polynomial matrices: the Gauss-Jordan inversion 

method and the Yujiro Inouye algorithm. The Gauss-Jordan method applies to the inversion of polynomial 

matrices and necessitates operations involving polynomials. Notably, when performing these operations, the 

resultant inverse may contain polynomials of high degree if common factors in the divisor and dividend 

polynomials are not canceled out in the numerators and denominators. Conversely, the Yujiro Inouye algorithm 

requires only operations with constant matrices. This algorithm produces an inverse in minimal degree form, 

provided that the polynomial matrix being inverted is not of a special form. It has been demonstrated that this 

method is faster than existing alternatives. Several examples are provided to illustrate the feasibility of both 

methods. 
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 الملخص 

باستخدام طريقتي جاوس الحدودية  المصفوفة  إيجاد معكوس  امكانية  تدرس  الورقة  تعتمد -هدا  إنويي.  يوجيرو  و  جوردن 

جوردن على العمليات الصفية الأولية التي تشمل متعددات الحدود، مما قد يؤدي إلى وجود معكوس يحتوي -طريقة جاوس

عوامل المشتركة. في المقابل، تتطلب طريقة يوجيرو إنويي إجراء العمليات  على متعددات من الرتبة العليا إذا لم يتم اختصار ال

على مصفوفات المعاملات فقط، مما ينتج عنه معكوس بأقل درجة. وتعتبر هذه الطريقة أسرع في حساب المعكوس مقارنة 

 بالطريقة السابقة.  كما تم دعم الورقة بعدد من الأمثلة التي توضح استخدام الطريقتين.  

 

 .المصفوفة الحدودية، معكوس المصفوفة الحدودية، العمليات الأولية الكلمات المفتاحية:

Introduction 

The study of polynomial matrices began in the early 20th century, evolving from traditional methods like Gauss-

Jordan elimination to include the Yujiro Inouye algorithm, which focuses on constant matrices for faster 

computations. These methods became crucial in multivariable control systems, where the inversion of polynomial 

matrices is essential for determining transfer functions. Ongoing research continues to enhance these techniques 

for complex applications. The primary objective of this work is to present two methods for computing the inverse 

of polynomial matrices, which frequently arise in the analysis and design of multivariable control systems. For 

instance, in the x-domain formulation, a control system is represented by the equations  𝑃(𝑥)𝑧 = 𝑉(𝑥)𝑣  and 𝑦 =
𝑈(𝑥)𝑧, where 𝑣 is a vector of inputs, 𝑦 is a vector of outputs and 𝑧 is a vector of system variables. The matrices 

𝑃(𝑥)  , 𝑉(𝑥) and 𝑈(𝑥) are real polynomial matrices. The determination of the transfer function matrix 𝐹(𝑥) =
𝑈(𝑥)𝑃−1(𝑥)𝑉(𝑥)  requires the computation of the inverse 𝑃−1(𝑥). Also, in the design of multivariable control 

systems, the inverse of 𝐹(𝑥) is required when 𝐹(𝑥)  is a square invertible matrix [6]. This paper introduces the 

Gauss-Jordan inversion method [7] and the Yujiro Inouye algorithm [10] for computing the inverses of polynomial 
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matrices. While the Gauss-Jordan method is commonly employed for the numerical inversion of constant 

matrices, it can also be adapted for polynomial matrices. The Yujiro Inouye algorithm is noted for its efficiency 

compared to methods in [4] and [5]. This algorithm requires only operations with constant matrices and allows 

for the simultaneous determination of the coefficients of the determinants. 

1. Basic definitions:                                                                                                                                    

Definition 1.1. A polynomial matrix 𝑃(𝑥) is a matrix where each entry is a polynomial in an indeterminate 

variable 𝑥. So, a general 𝑚 × 𝑛 polynomial matrix 𝑃(𝑥) can be written as 

𝑃(𝑥) = 𝑃𝑁𝑥
𝑁 + 𝑃𝑁−1𝑥

𝑁−1 +⋯+ 𝑃1𝑥 + 𝑃0                        (1) 

where each 𝑃𝑖  is a constant 𝑚 × 𝑛 matrix. The degree of 𝑃(𝑥) is 𝑁, assuming that the leading coefficient matrix 

𝑃𝑁 is non-zero.                                                                                                                                                    

Notice, the fundamental operations of addition, subtraction, and multiplication of two or more polynomial 

matrices are defined in the same manner as those for scalar matrices.                                                            

Definition 1.2. A polynomial matrix 𝑃(𝑥) is square matrix if it is 𝑛 × 𝑛 matrix, i.e. 𝑃𝑖  is a constant                  

𝑛 × 𝑛 matrix.                                                                                                                                                 

Definition 1.3[9]. A square polynomial matrix 𝑃(𝑥) is called proper if 𝑃𝑁 is non-singular, and it can be written 

as                                                                                                                                                                        

𝑃(𝑥) = 𝑃𝑁�̂�(𝑥), where �̂�(𝑥) = 𝐼𝑛𝑥
𝑁 + �̂�𝑁−1𝑥

𝑁−1+. . . +�̂�0  and �̂�𝑖 = 𝑃𝑁
−1𝑃𝑖 , 𝑖 = 0,1, . . . , 𝑁 − 1            

Definition 1.4[9]. Any square polynomial matrix 𝑃(𝑥) can be expressed as  

𝑃(𝑥) = 𝑃𝑁𝑑𝑖𝑎𝑔(𝑥
𝑑𝑖) + 𝑃𝑁−1𝑑𝑖𝑎𝑔(𝑥

𝑑𝑖−1) + ⋯+ 𝑃0𝑑𝑖𝑎𝑔(𝑥
𝑑𝑖−𝑁) 

Where The degree of the 𝑖𝑡ℎ column of 𝑃(𝑥), denoted as 𝑑𝑖,  is the highest degree of polynomial elements in the 

𝑖𝑡ℎ column of 𝑃(𝑥), 𝑁 = 𝑚𝑎𝑥(𝑑1, 𝑑2, . . . , 𝑑𝑛) , and 𝑑𝑖𝑎𝑔(𝑥𝑑𝑖) is the 𝑛 × 𝑛 diagonal matrix with diagonal 

elements 𝑥𝑑𝑖 . Since the elements of 𝑃(𝑥) are polynomial, the columns of 𝑃𝑖 corresponding to negative powers of 

𝑥 are zero.                                                                                                                                                     

Definition 1.5[9]. A square polynomial matrix 𝑃(𝑥) is called column proper if it can be written as              

𝑃(𝑥) = 𝑃𝑁�̂�(𝑥), where �̂�(𝑥) = 𝐼𝑛𝑑𝑖𝑎𝑔(𝑥
𝑑𝑖) + �̂�𝑁−1𝑑𝑖𝑎𝑔(𝑥

𝑑𝑖−1) + ⋯+ �̂�0𝑑𝑖𝑎𝑔(𝑥
𝑑𝑖−𝑁), and                         

�̂�𝑖 = 𝑃𝑁
−1𝑃𝑖  , 𝑖 = 0,1, . . . , 𝑁 − 1.                                                                                                                   

Definition 1.6[9]. A square polynomial matrix 𝑃(𝑥)  is called row proper if its transpose 𝑃𝑇(𝑥) is column 

proper.                                                                                                                                                            

Definition 1.7. The trace of a square polynomial matrix  𝑃(𝑥), denoted 𝑡𝑟(𝑃(𝑥)), is the sum of the elements on 

its main diagonal.                                                                                                                                         

Definition 1.8. the determinant of an 𝑛 × 𝑛  polynomial matrix 𝑃(𝑥) denoted as 𝑑𝑒𝑡𝑃(𝑥)  consists of a sum of 

𝑛! terms, each of which is the product of 𝑛 elements of the matrix. By definition, each element of 𝑃(𝑥),  in (1) 

has degree at most 𝑁, so when 𝑚 = 𝑛 the degree of 𝑑𝑒𝑡𝑃(𝑥) is at most 𝑛𝑁.                                             

Definition 1.9. A matrix 𝑃(𝑥) is non-singular if 𝑑𝑒𝑡𝑃(𝑥) ≠ 0, and it is singular when 𝑑𝑒𝑡𝑃(𝑥) = 0.             

Notes, when 𝑃𝑁 in (1) is singular the degree of 𝑑𝑒𝑡𝑃(𝑥) is less than 𝑛𝑁. When 𝑃𝑁 is non-singular then 𝑃(𝑥) is 

called regular, and 𝑃(𝑥) is monic when 𝑃𝑁 = 𝐼𝑛. Also, deduce that if 𝑃(𝑥), 𝑄(𝑥) are each 𝑛 × 𝑛 and have 

degrees  𝑁1 , 𝑁2  respectively then the degree of 𝑃𝑄 is 𝑁1 + 𝑁2   provided at least one of 𝑃𝑁 , 𝑄𝑁 is non-

singular.                                                                                                                                                        

Definition 1.10. The inverse of a square matrix  𝑃(𝑥) is defined as 

𝑃−1(𝑥) =
𝑎𝑑𝑗𝑃(𝑥)

𝑑𝑒𝑡𝑃(𝑥)
                                             (2) 

The elements of 𝑎𝑑𝑗𝑃(𝑥) are minors of 𝑃(𝑥), and are therefore polynomials. The inverse of 𝑃(𝑥) will not in 

general be a polynomial matrix. Hence,                                                                                                                   

a. If 𝑑𝑒𝑡𝑃(𝑥) is a non-zero scalar it follows that 𝑃−1(𝑥) will be a polynomial matrix. in which case 𝑃(𝑥),  is 

called unimodular (or invertible). Since 𝑑𝑒𝑡𝑃(𝑥) is then independent of 𝑥  its value will be unchanged by 

setting 𝑥 = 0 in (1), so for a unimodular matrix 𝑑𝑒𝑡𝑃(𝑥) = 𝑑𝑒𝑡𝑃0. Clearly, a necessary condition for 𝑃(𝑥), to 

be unimodular is that 𝑑𝑒𝑡𝑃𝑁 = 0, which ensures that there is no term in 𝑥𝑛𝑁 in 𝑑𝑒𝑡𝑃(𝑥).                                                                                                                                                   
b. If 𝑑𝑒𝑡𝑃(𝑥) is polynomial of degree at most 𝑛𝑁, then 𝑃−1(𝑥) will be a rational matrix (a ratio of two 

polynomials).   

2. Elementary operations [7]:                                                                                                                                     

I. The rank of a polynomial matrix is equal to the order of the largest square submatrix whose determinant is not 

identically zero.                                                                                                                                                         

II. Using 'line' to stand for either a row or a column of a polynomial matrix, the elementary operations defined 

as:                                                                                                                                                                             
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(a) interchange any two lines: 𝐿𝑖 → 𝐿𝑗 .                                                                                                                    

(b) multiply any line by a nonzero scalar: 𝑘𝐿𝑖 .                                                                                                       
(c) add to any line any other line multiplied by an arbitrary polynomial: 𝐿𝑖 + 𝑝(𝑥)𝐿𝑗  .                                          

III. Elementary operations as defined in 2 do not change the rank of a polynomial rank.                                          

IV. An elementary matrix is a polynomial matrix obtained by applying a single elementary operation to 𝐼𝑛, and 

is unimodular. Specifically, if 𝐸 is the matrix obtained by applying a row operation to 𝐼𝑛, then 𝐸𝑃 is the matrix 

obtained by applying the same operation to 𝑃.                                                                                                        

v. Two polynomial matrices 𝑃(𝑥), 𝑄(𝑥). are equivalent if it is possible to pass from one to the other by a 

sequence of elementary operations. The equivalence transformation can be represented by                           

𝑃(𝑥) = 𝐴(𝑥)𝑄(𝑥)𝐵(𝑥), where 𝐴(𝑥) and 𝐵(𝑥) are unimodular matrices. 

3. Finding the inverse of polynomial matrix using row elementary operations:                                                
To calculate the inverse of a polynomial matrix using row elementary operations, the Gauss-Jordan elimination 

method can be employed. This technique adapts the conventional methods used for constant matrices. Key 

requirements for this approach include that the matrix must be square and of full rank, which guarantees a non-

zero determinant.                                                                                                                                                

Given a square polynomial matrix 𝑃(𝑥) , its inverse 𝑃−1(𝑥) can be found using Gaussian elimination (or row 

reduction) to transform 𝑃(𝑥) into the identity matrix 𝐼𝑛 while applying the same operations to an identity matrix.  

Existence of an inverse:                                                                                                                                        

For an 𝑛 × 𝑛 matrix 𝑃(𝑥), the following statements are equal.                                                                                          

- 𝑃−1(𝑥) exist (𝑃(𝑥) is nonsigular).                                                                                                                                         

- 𝑟𝑎𝑛𝑘(𝑃(𝑥)) = 𝑛.                                                                                                                                                                            

- 𝑃(𝑥)
Gauss−Jordan
→           𝐼𝑛 .                                                                                                                                                      

Compute 𝑃−1(𝑥)  Using Row Elementary Operations:                                                                                    

Let 𝑃(𝑥) be an 𝑛 × 𝑛 polynomial matrix. Construct an augmented matrix which is [𝑃(𝑥)| 𝐼𝑛].                                          
where 𝐼𝑛 is the identity matrix of size  𝑛 × 𝑛. Gauss-Jordan elimination can be used to invert 𝑃(𝑥) by the 

reduction [𝑃(𝑥)| 𝐼𝑛]
Gauss−Jordan
→           [ 𝐼𝑛|𝑃

−1(𝑥)]. The only way for this reduction to fail is for a row of zeros to 

emerge in an augmented matrix and this occurs if and only if 𝑃(𝑥) is a singular matrix.                            

Example:                                                                                                                                                            

Given the polynomial matrix 

𝑃(𝑥)  = (𝑥
2 + 2 𝑥 + 2 𝑥 + 2
𝑥 + 1 𝑥 + 2 

) 

the Augmented Matrix is:  

𝑃(𝑥)  = (𝑥
2 + 2 𝑥 + 2 𝑥 + 2
𝑥 + 1 𝑥 + 2 

|  
1 0 
0 1

)  

𝑅2 ←
𝑥+1

𝑥2+2𝑥+2
𝑅1 − 𝑅2      ⇒     (

 𝑥2 + 2𝑥 + 2 𝑥 + 2

0
−(𝑥+2)(𝑥2+ 𝑥+1)

𝑥2+2 𝑥+2
 
|  

1 0 
𝑥+1

𝑥2+2 𝑥+2
−1) 

𝑅2 ←
𝑥+1

2𝑥
 𝑅2     ⇒     (

 𝑥 + 1 𝑥
0 1 

|  
1 0 
−𝑥

3𝑥+2

𝑥+1

3𝑥+2

) 

𝑅1 ← 𝑅1 +
𝑥2+2 𝑥+2

𝑥2+ 𝑥+1
𝑅2      ⇒     (

 𝑥2 + 2 𝑥 + 2 0

0
−(𝑥+2)(𝑥2+ 𝑥+1)

𝑥2+2 𝑥+2
 
|  

𝑥2+2𝑥+2

𝑥2+ 𝑥+1

−(𝑥2+2𝑥+2)

𝑥2+ 𝑥+1
 

𝑥+1

𝑥2+2 𝑥+2
−1

) 

𝑅1 ←
1

𝑥+1
𝑅1      ⇒     (

 1 0 
0 1 

|  

1

𝑥2+ 𝑥+1

−1

𝑥2+ 𝑥+1
 

−(𝑥+1)

(𝑥+2)(𝑥2+ 𝑥+1)

𝑥2+2𝑥+2

(𝑥+2)(𝑥2+ 𝑥+1)

)    

Thus, the inverse is: 

𝑃−1(𝑥) =

(

 

1

𝑥2 +  𝑥 + 1

−1

𝑥2 +  𝑥 + 1
 

−(𝑥 + 1)

(𝑥 + 2)(𝑥2 +  𝑥 + 1)

𝑥2 + 2𝑥 + 2

(𝑥 + 2)(𝑥2 +  𝑥 + 1))
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Hence: 

𝑃−1(𝑥) =
1

𝑥2 + 𝑥 + 1
(

1 −1
−(𝑥 + 1)

𝑥 + 2
 
𝑥2 + 2𝑥 + 2 

𝑥 + 2

) 

A challenge in using row operations is that if common factors are not removed during division, the resulting 

inverse may include high-degree polynomials [10].    

4. Finding the inverse of polynomial matrix using Yujiro Inouye algorithm [10]:  

  This algorithm for inverting polynomial matrices builds upon the Souriau-Frame-Faddeev [1,2,3] algorithm by 

using only operations with constant matrices, resulting in inverses expressed in minimal degree form. It is more 

efficient than previous methods and is particularly suitable for implementation in computer programming, 

employing the Gauss-Jordan elimination technique.                                                                                      Compute 

𝑃−1(𝑥)  Using Yujiro Inouye algorithm:                                                                                            As in definition 

1.5 a column proper polynomial matrix 𝐴(𝑥) can be reduced as  

𝑃(𝑥) = 𝑃𝑁𝑑𝑖𝑎𝑔(𝑥
𝑑𝑖) + 𝑃𝑁−1𝑑𝑖𝑎𝑔(𝑥

𝑑𝑖−1) + ⋯+ 𝑃0𝑑𝑖𝑎𝑔(𝑥
𝑑𝑖−𝑁) 

Where 𝑃𝑁 = 𝐼𝑛,  𝑁 = 𝑚𝑎𝑥(𝑑1, 𝑑2, . . . , 𝑑𝑛) , and the columns of 𝑃𝑖 corresponding to negative powers of 𝑥 are 

zero. Also, we can represent 𝑃(𝑥) = 𝑃𝑁�̂�(𝑥), where 

�̂�(𝑥) = 𝐼𝑛𝑑𝑖𝑎𝑔(𝑥
𝑑𝑖) + �̂�𝑁−1𝑑𝑖𝑎𝑔(𝑥

𝑑𝑖−1) + ⋯+ �̂�0𝑑𝑖𝑎𝑔(𝑥
𝑑𝑖−𝑁), and �̂�𝑖 = 𝑃𝑁

−1𝑃𝑖  , 𝑖 = 0,1, . . . , 𝑁 − 1. 

The determinant of 𝑃(𝑥) is a monic polynomial of degree 𝑚 = 𝑑1 + 𝑑2+. . . +𝑑𝑛: 

𝑑𝑒𝑡𝑃(𝑥) = 𝑎𝑚𝑥
𝑚 + 𝑎𝑚−1𝑥

𝑚−1+. . . +𝑎0 

Where 𝑎𝑚 = 1, 𝑎𝑚−𝑘 =
1

𝑘
∑ 𝑗. 𝑡𝑟(
𝑚𝑖𝑛(𝑁,𝑘)
𝑗=1∨(−𝑚+𝑝+𝑘) 𝑃𝑄𝑚−𝑁−𝑘+𝑗),  𝑘 = 1, . . . , 𝑚                                                      

Since 𝑃(𝑥) is column proper then the 𝑎𝑑𝑗𝑃(𝑥) is row proper, and the 𝑖𝑡ℎ row of 𝑎𝑑𝑗𝑃(𝑥)  has degree 𝑚 − 𝑑𝑖. 
Therefor, 

𝑎𝑑𝑗𝑃(𝑥) = 𝑑𝑖𝑎𝑔(𝑥𝑚−𝑑𝑖)𝑄𝑚−𝑝 + 𝑑𝑖𝑎𝑔(𝑥
𝑚−𝑑𝑖−1)𝑄𝑚−𝑝−1 +⋯+ 𝑑𝑖𝑎𝑔(𝑥

𝑝−𝑑𝑖)𝑄0 

Where  𝑝 = 𝑚𝑖𝑛(𝑑1, 𝑑2, . . . +𝑑𝑛), 𝑄𝑚−𝑝 = 𝐼𝑛, 𝑄𝑚−𝑝−𝑘 = 𝑎𝑚−𝑘𝐼𝑛 − ∑ 𝑃𝑁−𝑗
𝑚𝑖𝑛(𝑁,𝑘)
𝑗=1 𝑄𝑚−𝑁−𝑘+𝑗,                         

𝑘 = 1, . . . , 𝑚 − 𝑝,  and 𝑄−1 = 0. Finally, 𝑃−1(𝑥) =
𝑎𝑑𝑗𝑃(𝑥)

𝑑𝑒𝑡𝑃(𝑥)
 .                                                                      

Example:                                                                                                                                                                 

To grasp the algorithm, let's look at the following example. 

𝑃(𝑥)  = (𝑥
2 + 2 𝑥 + 2 𝑥 + 2
𝑥 + 1 𝑥 + 2 

) 

 The degrees 𝑑1 = 2, 𝑑2 = 1. 𝑃(𝑥) can be written as  

𝑃(𝑥)  = (
 1 1
0 1 

) ( 𝑥
2 0
0 𝑥 

) + (
 2 2
1 2 

) (
 𝑥 0
0 1 

) + (
 2 0
1 0 

) (
 1 0
0 𝑥−1 

) 

𝑃2
−1 = (

1 −1
0 1

) 

�̂�(𝑥)  = I2 (
 𝑥2 0
0 𝑥 

) + �̂�1 (
 𝑥 0
0 1 

) + �̂�0 (
 1 0
0 𝑥−1 

) 

�̂�1 = 𝑃2
−1𝑃1 = (

 1 0
1 2 

) and  �̂�0 = 𝑃2
−1𝑃0 = (

 1 0
1 0 

) 

𝑚 = 𝑑1 + 𝑑2 = 3, 𝑁 = 𝑚𝑎𝑥(𝑑1, 𝑑2) = 2,  and  𝑝 = 𝑚𝑖𝑛(𝑑1, 𝑑2) = 1 

𝑑𝑒𝑡�̂�(𝑥) = �̂�3𝑥
3 + �̂�2𝑥

2 + �̂�1𝑥 + �̂�0 

and  

𝑎𝑑𝑗�̂�(𝑥)  = (
𝑥 0
0  𝑥2 

) �̂�2 + (
 1 0
0 𝑥 

) �̂�1 + (
 𝑥−1 0
0  2

) �̂�0 

�̂�3 = 1                                                                              �̂�2 = I2 
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�̂�2 = 𝑡𝑟(�̂�1�̂�2) = 3                                                        �̂�1 = �̂�2I2 − �̂�1�̂�2 = (
 2 0
−1 1

)    

�̂�1 =
1

2
[𝑡𝑟(�̂�1�̂�1) + 2𝑡𝑟(�̂�0�̂�2)] = 3                          �̂�0 = �̂�1I2 − �̂�1�̂�1 − �̂�0�̂�2 = (

 0 0
−1 1

) 

�̂�0 =
1

3
[𝑡𝑟(�̂�1�̂�0) + 2𝑡𝑟(�̂�0�̂�1)] = 2                          �̂�−1 = �̂�0I2 − �̂�1�̂�0 − �̂�0�̂�1 = 0  

𝑑𝑒𝑡�̂�(𝑥) = 𝑥3 + 3𝑥2 + 3𝑥 + 2 

𝑎𝑑𝑗�̂�(𝑥)  = (
𝑥 0
0  𝑥2 

) I2 + (
 1 0
0 𝑥 

) (
 2 0
−1 1

) + ( 𝑥
−1 0
0  2

) (
 0 0
−1 1

) = (
𝑥 + 2 0

−(𝑥 + 1)  𝑥2 + 𝑥 + 1 
) 

�̂�−1(𝑥) =
𝑎𝑑𝑗�̂�(𝑥)

𝑑𝑒𝑡�̂�(𝑥)
=

1

𝑥3 + 3𝑥2 + 3𝑥 + 2
(
𝑥 + 2 0

−(𝑥 + 1)  𝑥2 + 𝑥 + 1 
) 

𝑃−1(𝑥) = �̂�−1(𝑥) (
 1 −1
0 1

) =
1

𝑥3 + 3𝑥2 + 3𝑥 + 2
(
𝑥 + 2 −(𝑥 + 2)

−(𝑥 + 1)  𝑥2 + 2𝑥 + 2 
) 

𝑃−1(𝑥) =
1

𝑥2 + 𝑥 + 1
(

1 −1
−(𝑥 + 1)

𝑥 + 2
 
𝑥2 + 2𝑥 + 2 

𝑥 + 2

) 

Numerically, we obtained the same result using Python, and here is the code: 
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Here is the inverse obtained from executing the code: 

 
Conclusion 

We have explored two key methods for inverting polynomial matrices: the Gauss-Jordan inversion method and 

the Yujiro Inouye algorithm. While the Gauss-Jordan method is adaptable for polynomial matrices, it can generate 

high-degree polynomials in the inverse if common factors are not properly managed. In contrast, the Yujiro Inouye 

algorithm offers a significant advantage by relying solely on constant matrix operations, resulting in inverses in 

minimal degree form and demonstrating faster performance than traditional methods. A range of examples was 

provided to illustrate both techniques, showcasing their practical utility and effectiveness. These methods serve 

as valuable resources for researchers working with polynomial matrices, enhancing our ability to analyze and 

design complex systems. Future research could focus on optimizing these algorithms and investigating their 

integration into broader computational frameworks, ensuring ongoing progress in this field. 
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