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Abstract:

In this paper, we define the operator DZ:Z'ZS‘{,,d [a;, B;], and applying this operator to the harmonic function. Using
this operator we introduce a new class of complex-valued harmonic functions with respect to symmetric points.
We obtain coefficient bounds, extreme points, distortion bounds, convex combinations, and inclusion results and
closure under an integral operator for this family of harmonic univalent functions.

Keywords Harmonic functions, Dziok-Srivastava operator, derivative operator, symmetric point, integral
operator.
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1. Introduction
We denote by S;; the family of functions

f=h+g, (1.1)

that are harmonic and sense-preserving in the open unit disk U = {z € C: |z| < 1} for which f(0) = h(0) =
f,(0) —1 =0.Thus, for f = h + g € Sy we may write the analytic functions h and g in the forms

h(z) =z+ Y5, a2z, g(2) = ¥p-, brz®, (0 < b, < 1). (1.2)

We call h the analytic part and g the co-analytic part of f. A necessary and sufficient condition for f to be
locally univalent and sense-preserving in S, is that |k'(2)| > |g'(2)| in Sy. See Clunie and Sheil-Small [5].

Hence
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f(@)=z+37, axzF + Y5, bpzk, (0 < by < 1). (1.3)

We denote S5 as the subclass of S;; comprising harmonic functions f = h + g given by (1.1) of the form
f(2)=z-3Y7, axzF + Y5, bpz¥, (0 <b; <1). 1.4)

For parameters a; € C(i = 1,...,q), and ; € C\{0,—1,-2,....}(j = 1,..., s), the generalized hypergeometric
function F(ay,...,aq; P1,--., Bs; z) is defined as:

[ee]

qFS(alv'--vaq;ﬁlf"'fﬁs:z) = Z

k=0

(al)k"-"(aq)ki

(ﬁl)k!'--; (ﬁs)k k',

(q<s+1,q,s e Ny =NU{0},z € U), and (v) is the Pochhammer symbol (or the shifted factorial) defined
(in terms of the Gamma function) by

_Tv+k) (1, k=0,vecC\ {0}
(V)k—W—{V(V+1)(v+2)....(v+k—1), k € N={123,...}.

Dziok and Srivastava [8] defined the linear operator

H(ay,...,ag; By, ... Bs; 2)P(2) = z + Ty Yiearz¥, (1.5)
Where
_ (a)k—1m(@qlk-1
Yk - B k=1-+Bs)k—1(k—1)! ’ (16)

for convenience we write

H(all ey aq; .81' L] ﬁs; Z)¢(Z) = qus[al]d)(z)'

Recently, the authors in [17] presented a function M/{‘l Apbd defined as follows

M a,0a(2) = 2+ Ty A7 (A, 20, O)2%, (L.7)
where
mk _ [e@+A1+A) (k—1)+d ™
Aa™ (A, 22, 6) = [ 2(1+25(k—1))+d ] ’ (1.8)
m,d €Ny ={0,1,2,...},1, 21, =20,£>0,and £ +d > 0.
Utilizing the Hadamard product, the linear operator D,"3", ,[a;, §;] is defined as follows
D e ales Bl (2) = MJLa, 00(2) + H ()b (2),
then, from (1.5) and (1.7), we have
DI, ala Bld(2) = 2 + By Np* (A, A, )Y 2, (1.9)
where Y;, and AZ”‘ (A1, Ay, ©) are defined in (1.6) and (1.8), respectively.
Now, by applying the operator defined in (1.9) to the harmonic function given by (1.1),
we get
Dy palan Bilf(2) = D3, Jlai Bilh(z) + D57, ([ Bilg (). (1.10)

We note that, the operator D; (" ; [a;, B;1f (2) = I;’fs'a(al, B1)f () was studied by EI-Ashwah and Aouf
(see[9]).
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Also, if the co-analytic part g = 0, then Dfquz{,d[ai,ﬁj]f(z) =Dy 101 Bilf (2) = H¥[a,]f (2) was
studied by Dziok-Srivastava (see [8]). Also we note that

Q) Forg=s+1la,=1(=1,,s+1),;=1( =1,-,5),4, = 0and £ = 1 we get the
operator I™ (4, ¢) given by Catas [4].

(ii) Forg=s+1,a;=1(=1,--,s+1) B;=1(G=1,,5),4,=d=0

and A; = £ = 1 we get salagean operator D™ (see [18] ).

(iii) Forg=s+1la,=1(=1,,s+1),8,=1(G=1,-,5) A, =d =0and £ = 1 we get the
operator D;"* given by Al-Oboudi [1].

(iv) Forg=2,s=1,a =n+1a,=1and B = 1we get derivative operator D;""; , , given by
Oshah and Darus [17].

(v) Forg=2s=1a;=a+1,a,=14 =1,£=1andd = 0, we get derivative operator D;"}
given by Eljamal and Darus [11].

(vi) Forg=2,s=1,a;,=8+1,a,=1,5;, =1and £ =1, we get derivative operator D,1 ,1 5 given
by El-Yagubi and Darus [10].

(vii) Forg=2,s=1,a,=n+1a,=1,6;, =1,1, =1and A, = 0, we get derivative operator ;’}B
given by Swamy [20].

(viii) Forg=s+1,4,=0and1; = =1,d = A, we get derivative operator I;* given by Cho and
Srivastava [6].

(ix) Forgq=2,s=1,a,=n+1a,=1,6 =1and 1, =d = 0,¢ = 1, we get derivative operator
D} given by Darus and Al-Shagsi [12].

(x) Forg=s+1and 1, =0,14, =¥ =d = 1, we get derivative operator L™given by Uralegaddi and
Somanatha [21].

By suitably specializing the values of q,s,a;(i = 1,-+-,q) and ;(j = 1, -+, s), we obtain

Diingaln + LLf(2) = DI of () = 2+ By 05 (A, 2, ) T 2 gz +
Sy AR (A, 20, )52 ("“)k 1b ZKn>—1,
Diineal® Liclf @) = Dfs s, rala, 1f (@) = 2+ iy N7 (A1, 2, ) 5 a2 +
o, AT, /lz,f)((cgﬁbkz", (@ € R, c € R\Zp).

Motivated by earlier works of [2,9,13,14,22,23] on harmonic functions, we introduce a new class
HSM " (A4, 25,4, d, [a;, B;], 8) of Sy that are starlike with respect to symmetric points.

Definition 1.1 For 0 < § < 1 and z = re'® € U, we let HS;"* (14, A,, ¢, d, [a;, B;], ) a subclass of Sy, of the
form f = h + g given by (1.3) and satisfying the analytic criteria

2z %, dlewBilf (@)
A1, 42,£,d7 VP ] ) (1.11)

Re{—mas dS
2[4, alauB)f @-Dy Y, lai)lf (-2)]
m,aq,s . . r_ 0 .. if
where Dy, Azm[al, B;l1f (2) is defined by (1.10) and z' = ﬁ(z =re'%).
—m,q,s m,aq,s
Also, we let HSg- " (A4, 45, ¢,d,[a1],8) = HSG""" (A4, A2, ¢, d, [, B;], 8) N S

By suitably specializing the values of g, s,m, 44, 1,, ¢,d, a; and 8}, the class m;’i“"s (M, 42,4, 4, [a;, Bj], ) leads
to various subclasses which were studied by various authors as follows

(i) HSs""(A1,0,1,d, [ay, b1, 8) = HSs " (q,s, [y, B1], ) which was studied by R.El-Ashwah et al. [9],
(i) HSe" (A1, 2y, 4,d, [a;, B;],6) = HSs+([a,], ) which was studied by Murugusundaramoorthy et al. [16],
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(i) HSe" (1,0,1,0,[1,1],6) = SH,(m, @) which were studied by AL-Khal and AlKharsani [3].
And, we note that
—m,2,1 —_—
*HS¢»  (144,0,1,d,[1,1;1],8) = HSs+(4,4,6)

— 7. 22(™ A0 f ()
- {f (z) € H: Re (zr[zm(/l,e)f(z)—1m(/1,f)f(—z)]) > 6}'

—m,2,1 —m
*HSs-  (1,0,1,4d,[1,1;1],8) = HSs+(4,98)

- {f(z) € H: Re (M) > 5}.

21 f (@) ~13'f (-2)]
—m,2,1 —m,n
* HSS* (/‘{1')'2' f, d; [Tl + 1;1; 1]: 6) = HSS* (Al, Az, {), d, 6)

!
2z(D}1*,'j12'{,‘df(z)) s
zr[D/’{f”;z' b DD 4 f(—z)] )

= {f(z) €EH: SRe(
—m,2,1 —m,a
*HSg+ (A1, 42,10, [@ + 1,1;1],6) = HSg+ (444, 6)

_ {f(z) € i ERe( 2Py, @) ) > 6}.

2[DJYS F()-DIvG f(-2)]

—m,2,1 —m{,d
.HSS* (/11')‘2;{); d; [a; 1;C], 6) = HSS* (/11,).2, a,c, 6)

!
ZZ(D;’;_AZ,[_d[a,c]f(z)) ) S 6}

21[DF 3, palaclf(D-DF 4. alaclf(-2)

= {f(z) € H:Re <

Observe that, the class HSE’E'q'S(Al,AZ,t’, d, [a;, B;], 6) reduce to the class S5 (&) of starlike functions concerning
symmetric points as introduced by Sakaguchi [19] if m=0,g=s+1,a; =1({=1,-,s+1) f;=1( =
1,---,s5), and the co-analytic part of f=h+yg is identically zero (g =0). Moreover, the class
HSS’T’q'S(/ll,/lz,t’, d, [a;, B;], 6) reduce to the class K (&) of convex functions concerning symmetric points, as
introduced by Das and Singh [7] if g =s+1,a;=1(i=1,-,5+1) B;=1( =1,-,5),4, =d=0,m =
A, = £ = 1 and the co-analytic part of f = h + g is identically zero (g = 0).

This paper presents the derivation of coefficient conditions for the classes Hsg?q's(/ll,/lz,{’, d,[a; B;],6) and

HSe: " (A4, 2y, 8,d, [a;, B;],8). Additionally, it establishes a representation theorem, investigates inclusion
properties and distortion bounds, and demonstrates inclusion results as well as closure under an integral operator

for the class HSs- " (A1, A2, £, d, [, B;], 8).
2 Coefficient characterization
Throughout this paper, unless otherwise specified, we assume q,s € N,a; = 1,a4,...,a4,B1,...,fs € R* and

0 < 6 < 1. We start by establishing a sufficient condition for functions f belonging to the class
HSZ (A, 22,4, d, [, B, 6).

Theorem 2.1 Let f = h + g be given by (1.3). Furthermore we let

w  [2k+8((-Dk-1) )
Zk:z %N; k(ll» /12: [)Yklakl

[2k-6((-1)F

co _1) )
2 B (A, 2, OVl < 1, @)
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where Y, and Agl'k(/ll,/lz,{’) are defined in (1.6) and (1.8), respectively. Then f is sense-preserving, harmonic

univalent in U and and belongs to the class HSg~ (4, ,,4,d, [a;, B;], 6).

Proof. According to the condition (1.11), we only need to show that if the inequality (2.1) holds, then

>4,

R 22(03, %, alaiBj)f (@) _ Red®
2D % laBf @Dy %, jlauB)lf (-2)] ®5@

where

A@@) = 22D, ol B ()

=27z +Z KA™* (A4, A, €)Yy 2 —Z kAT k(Al,AZ,{’)kakzk]

k=1

and

B(z) = 2 [D]%%, 4l B1f (2) — D3 4l i) (—2)]

=7'[2z - ¥, [(—D* = 1A (A, Ay, O Viearez* — Tiey [(1)% — 1]A (A, Ay, €)Yy by 2¥].

Using the condition Re(w(z)) > 6§ © |1 —§ + w| > |1 + 6§ — w], it is sufficient to prove that
|A(z) + (1 — 8)B(2)| — |A(2) — (1 + 6)B(2)| > 0.
Substituting the expressions for A(z) and B(z) from (2.1) into (2.2), we obtain
|2(2 -8z +Yy, [2k— (1 -8&((-1k - 1)]A’;'k(/11,/12,€)Ykakzk
=¥ 2k + (1 = (DX = DIAG* (A, Az, )i byz
—|=262 + T2, [2k + (1 — 8)(— 1) — DIAT* Ay, Ay, £) Vi 2"
— ¥y [2k = (14 8)((—1)* = DIAT* (s, Az, £)Viehi 2|
> 4(1 = 8)|z| = 27, [2k + (=1 = DIAGT* (A, A, &)Y |ay || 2]

—237% [2k = 8((—1)* = DIAF* (A, A2, €)Y byl 12|

o [2k+8((-Dk-1) _
= 4(1 - ®)lzll1 - B, PR 25, 0 a2

[2k-8((-1)¥

o -1) -
-y, BESCUDL Nk (2, 25, €Y, B2

> 4(1 - O)[1 - 5, PNV Nk, 2, 03, o
[2k-6((-1)k-1

Tl N (s 2y Vil )

— L=t

This final expression is non-negative by (2.1). The harmonic univalent functions

2(1-6) k
X
DIy 07 K

f(Z) _Z+Zk =2 [2k+5(( 1)k

2(1-6) T
+Xk=1 [2k—8((-1)k-1)|ATK (A1,25,0) Yy, Yz

52 | African Journal of Advanced Pure and Applied Sciences (AJAPAS)

2.2)

(2.3)



where Y7, |Xi| + Yre1 |Yx| = 1, show that the coefficient bound given by (2.1) is sharp. The functions f of
the form (2.3) are in HSg=?* (A4, A5, 4, d, [a;, B;], 6) because

2k+8((-1)%-1)

R R AN
o [2k=8(—DF-D)] \m, o o
+ X=1 %A?k()“lvAZv#)Yklbkl = Yo 1 Xiel + 2= Vel = 1.

The proof is now complete.
By setting A1, = 0,¢ = 1 we derive the following corollary

Corollary 2.2 [9] Let f = h + g be given by (1.1). Furthermore we let

o [2k+8((-DF-D)] [1+£+A0-1)™
Li=2 2(1-6) [ 1+4¢ ] Vielal
o [2k=8((-1)*-1)] [1+L+2(k-1)]™
+ Xk 2(1-8) [ 1+£ ] Vielbiel =1,

where Y, is defined in (1.6). Then f is sense-preserving, harmonic univalent in U and f €
HS 3™ (q,5, (a1, Bl 6).

We proceed to prove the following theorem, which states that condition (2.1) is also necessary for functions f to
belong to the class HSg- (A1, A3, £, d, [a;, B;1,8).

Theorem 2.3 Let f = h + g be given by (1.4). Then f € HSs- (A1, A3, €, d, [, B;], &) if and only if

o [2k+8((-DF-1)] \m,
Bz, PO Gy, i, €)Yl

[2k-6((-1)k-1)]

2(1_5) Ag‘k(ll’){z’f)yklbkl S 11 (24)

+ X1
where Y;, and AZ"" (A4, A5, ©) are defined in (1.6) and (1.8), respectively.

Proof. Since HSs- (A1, A3, £,d, [y, B;1,8) © HST™* (A1, A, 4, d, [a;, B;], 6), Our task is limited to proving the
the "only if" part of the theorem. To accomplish this, for functions f of the form (1.4), we observe that the
condition.

22(D3 %, alaiBjlf @)
R Z,[Dm,q,s S _Amas CRAF(— >4,
AAz,0al 0PI @D =Dy )7, 0.al@iBjI 2]

is equivalent to

— (2.5)

Re 2(1-8)-25%, [2k+8((~ F~D]AT* (A3 A0, )V a2k 12552 [2k~8(—~F-D)ATH (A1,25,0)Yicbyz" >0
24350, (DR-DARK A1 A2 )Y earzk 12520 | (~1)k—1)A* (A1,42,6)YbyZ '

The required condition (2.5) must be satisfied for all values of z € U. By selecting values of z on the positive real
axis where 0 < z = r < 1, the condition must hold

K - k -
R (2002, [2k+8(=DF-D)]AG" A1 A2 ) arr =B, [2k=8(~D*=D]AZ" (A1 A2,0) Yyebyrk—?
e 0 k mk k-1_yo k mk q k-1
2455, (CDR-DAG" (1220 Year k=1 =552 (CD*-DAG" (A1.22,0)Yber

} >0. (26)

If the condition (2.4) does not hold, then the numerator in (2.5) is negative for r sufficiently close to 1. Hence
there exists z, = r, in (0,1) for which the quotient in (2.6) is negative. This contradicts the required condition

for f(z) € m:i'q's(/ll,/lz,f, d, [a;, 3], 6) and so the proof of Theorem 2.3 is complete .
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By appropriately specifying the values of 1,1,,¢,d,q,s,a;(i =1,--,q) and B;(j = 1,--,s), the following

corollaries are derived

—A2, . .
Corollary2.4 Forf =h+g € Hszm(Q, s, [aq, B1], v) if and only if

o [2k+8((-D*-1)] [1+L+2(k-1)]™
Y=z 2(1-6) [ 1+¢ ] Yielax|
[2k-6((-1)k-1)] [1+t’+l(k—1)

m
2(1-6) 1+¢ ] YVielbie| =1

+ Xi=1

Corollary 2.5 For f = h +g € HS,-(A,%,68) if and only if

[2k+6((-1)k-1)] [1+{’+A(k—1) m
2(1-8) 1+£

Yit2

o [2k=8((-Dk-1)] [1+e+2(k-1)]™
+yp, BESCUD) |" bl < 1.

Corollary 2.6 For f = h + g € HSw (A, &) if and only if

[2k+8((-1)*-1)] [k+€]m
2(1-8) 1+£

Zkz

o [2k=8((-Dk-1)] [k+¢
+Zk=1¥[_

m
2(1-6) 1+t’] bl =1
Corollary 2.7 For f =h+g € HSy (A, Ay, 4,d, &) if and only if

o [RE+S(-D*-D] \mk (+D)g—y
D=2 T N A (A, A, ) ——— Dr- |k|

2k-8((-1)k-1) +1)
+ X1 [ZWAMIC(ALAZFE) SN — bl = 1.

Corollary 2.8 For f =h+g € HSy (4,45, 8) if and only if

yo [2k+8((-1)k-1)] [1+(/11+/12)(k—1) M (@+1)_q ||
k=2 231-9) 1422 (k1) (-1 K
[2k=8((-1)*-1)] [1+</11+Az>(k—1>]m (@+ k-1 by |

<1
2(1-9) 1+22(k-1) Dk-1

+ Xkt

—m, ¥, R R
Corollary29 Forf=h+g € HSZ: d(/11,/12, a,c,d) if and only if

o  [2k+8((-DF-D] ymk (@k-1
Zize ~aamey M (el D g Trlad

[2k-8((-1)k

) 1)] mk %
+ Ty H LN (g, 2y, ) 2 by < 1.

3 Extreme points and distortion theorem
The following theorem investigates the extreme points of the convex hulls associated with the class

HSg"" (A1, A, 4,d, [a;, B;], 6) denoted by clco HSg- " (Ay, 23,4, d, [a;, B;], 6).
Theorem 3.1 A function f;, € clco H_Sz'q's(/ll,lz,f, d,[a;, B;],6) if and only if

fu(2) = Liza [Xichie(2) + Yiegie(2)],
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where h,(z) = z,

. 2(1-6) kp
hi(2) =z [2k+8((—DK=D)]ATK (A1,25,0) Yy, (e 22),

and

2(1-8)

) = G o DT G Y

Z5 (k = 1),

Xk 2 0, Yk 2 O, Zloco=1 (Xk + Yk) = 1
Particularly, the extreme points of the class m;’i'q‘s(zl, Az ¢, d, [a;, B, 6) are {hy } and {g,}.

Proof. For the functions f;, (z) of the form (3.1), we have

- 2(1-6) k
k=2 [2k+8((—1)k—1)]A21’k(/11')‘2'€)yk Xz

fi@) =2~

2(1-6) —k
—)]ATE (24,25,£) Y Yz

2 [2k-8((-1)k

Then, by using Theorem 2.3, we get

[2k = 8((-DF = 1)]
2(1-9)

(o] _ k _
Z 2k + §((-D* - 1D)] A (g, Az €)Y B |

AR (AL 1, )Y a +Z
2oy G Dt + )

k=2

=y [2k+8((-1)F-1)]
T &k=2 2(1-8)

mk 2(1-6)
Ag" (A, Az, )Y ([2k+s((—1)k—1)]A§i""‘(/11,/12,e)yk X")

o [2k=8((—D*-D)] \mk < 2(1-5) )
+ Zk:l 2(1-6) Ad (11; /12; 'B)Yk [ZR_S((—1)k—1)]AZLk(Al,lz,€)Yk Yk

:sz‘i‘z Yk:]._XlSl,
k=2 k=1

and so f;, € HSg+ ' (A1, Az, 4, d, [y, B;], ).

Conversely, if f;, € clco HSg- (A, A3, €,d, [a;, B;], ). Setting

_ [2k+6((-1)k-1)]

X 2(1-6)

AT (A, A0, D) Yilag | (k= 2),
and

2k-8((-D*-1)] \m,
- ﬁ/\gk(lvlz'fwklbkl,

Yy
we then obtain
fi(2) = Ziz1 [Xehi(2) + Y9k (2)] asrequired.

The following theorem presents distortion bounds for functions f in the class H_S?'q's(ll,lz,f, d,[a;, B;],6)
which consequently provides a covering result for this class.

Theorem 3.2 Let f be defined by (1.4). Then f € HSg+ " (Ay, A, 4,d, [a;, B;],6).  Thenfor |z] = r < 1, we
have

1 1-6 148
If (@] = (1 + b )r +W{T —T|b1|}7‘2,
[ (1+22)+d 2
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and

1 1-8 146 2
If(2) =1~ |b1|)r—w{7—7|b1|}r :
2(1+22)+d 2

The result is sharp.

Proof. We will prove the first inequality only, as the second follows a similar process and is not included here.
Letf € m;ri’q's(/ll,/lz,{’, d, [a;, B;], 6). Taking the absolute value of f we get the following

lf) =1+ Ibll)r+z (lax] + b Dr¥ < (1 + Ibll)r+rzz (lak| + by
k=2 k=2

(1-96) O A (A, Ao, DY
<A+ |bDr+ Z + |br?
L1+ 1,)+d 2

~ (1 - 8)r? > ([2k + 8((—1)F — 1)]
= (L {br+ O+ A+ Ap) +d]™ Z{ 4(1—06) la
L1+ 1,)+d ] 2

k=2

[2k = 6((=D)* - 1)]

|bk|}A’:'k(Al.Az,t’)Yk

4(1-10)

~ (1 - 8)r? > ([2k + 8((—1)F — 1)]

_(H'bIDHZ €(1+/11+/12)+d]mY kz_z{ 2(1—0) ]
P(1+21,)+d 25"

[2k = 8((-D* = 1)]
2(1-9)

|bk|}A’;"‘(Al,Az,f)Yk

(1-8)r2 1+6
<@+ Ibll)r+W(1 i)

P(1+12)+d

= L+ b Dr + o (50— 22 b)) 2.

[€(1+/11+/12)+d m 2
P(1+A2)+d

The upper bound is sharp and the equality holds when

_ — 1 1-8  1+§ —2
f(Z)—”bl”m(T—lell)z :
2(1+22)+d 2

This concludes the proof of Theorem 3.2.

4 Convolution and convex combination
Before presenting the next theorem, it is necessary to define the convolution of two harmonic functions..

Let

f(2) =2- 32, a7+ 32, bz, |by| <1, (4.2)

and

F(z) =z-Y%, Ayz¥ + 2., B,Z", (Ax = 0,B, = 0). (4.2)

Then the convolution of two harmonic functions f and F given by
(f *F)(2) = f(2) * F(2) = 2 — 5, @eAez® + T3y biBiZ". (43)
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Theorem 4.1 Let f € HSg- " (Ay, A2, 4,d, [a;, B;],8) and F € HSs- " (A1, Az, £, d, [y, Bj1,¥) for 0 <y < 6 < 1.
Then

—m,q,S —m,q,S
f*F € HSS* (Al,/‘lz,‘g,d, [auﬁj],(g) c HSS* (/11:/12’#!61’ [al’ﬁ]]’]/)

Proof. The convolution f = F is defined by (4.3). We want to show that the coefficient of f x F satisfy the
condition given by Theorem 2.3 .

For F € HSg " (A4, A2, £, d, [a;, B;], ¥) We have
0<A,<10<B, <1
Now, for the convolution function f * F we obtain
TP [2k + 6((-DF = DIAG* (A, 25, ) Viclar | A
+ 2 [2k = (-1 = DIAG" (A1, Ay, €)Y |y |By
< 3R, [2k + 8((=D)* = DIAG" (A1, 25, )Yl
+ T [2k = 8((=1)F = DIAT* (A1, A2, €)Y il
<2(1-68)<2(1-7).
Hence, we have the desired result.
Let us now examine the properties of the convex combination of H_S?i'q’s(/ll,lz, t,d,[a;, B, 6).
Define the function f;(z) , fori = 1,2, -+, as follows
[i(@) = 2= 37, lag |2 + Ty |by,|Z". (4.9)
Theorem 4.2 Let the functions f;(z) be defined by (4.4) be in the class
HSg"" (A1, A, 4,d, [a;, B;],6) for i = 1,2, ... . Then the functions &(z) defined by
§i2) =X tfi(2), 0<7; <1, (4.5)
are also in the class H_S?q's(/ll, A2, %,d, [y, B;],6), where 3.2, 7, = 1.
Proof. Based on the given definition of &;(z), he convex combination of f; can be expressed as follows
§(2) = 2= E7, (I8 nilag))z* + 252, (B2, wlbi))Z".

Further, since f,(z) € HSg- (A1, A2, 4,d, [y, B;],8) for (i = 1,2,--+). Then by using Theorem 2.3, we have

o [2k+8((-1)k-1) ) ©
Zk=2 ﬁl\gk(lp Az,f)Yk(Ziﬂ Ti|akl-|)

2k=8((-1)*-1) o
%Amk@vﬂz,fﬂk(zhl A1)

+Xk=1
[2k+68((-1)k-1)]
2(1-8)

=32, T |2, NP* (R, Aoy €)Yl |
[2k-6((-1)k-1

LN 2 €Yl

+ L=

<Y1 T =
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This completes the proof of Theorem (4.2) .

5 Integral operator
Finally, our focus shifts to investigating the closure property of the class m;’l'” (A1, 42, 4,4, [a;, B;], 8) under the
generalized Bernardi-Libera -Livingston integral operator I, (f) (see [15]), This operator is given by

L(F) = L(f(2)) = 57 [} 471 f (D). (5.1)
Theorem 5.1 Let f(z) € HSg+ (A1, A2, £, d, [a;, B;], 8). Then I, (f (2)) € HSs- " (A1, Az, £, d, [as, B, 5).

Proof. Based on the representation of I,(f (z)), it can be concluded that

1% —
L(F@) =“ZJ; fo 4 1h(t) + g(o)dt
u+1 z = z ~ =
I fo th 1<t_kz=z akt"> d1:+f0 th 1(; bktk> dt)

+ 1 z *© z *© z
_4 . (f thdt — Z akf thtk-1qt + Z bkf t#+k-1dt>
z 0 k=2 0 k=2 0

(o0}

=Z—Z Aka‘l'Z Bkik,

k=2 k=1

+1
where 4, =~
u+k

a, By = ﬁbk. Therefore
u+1

a
e

AL (A4, Ag, O) Yy

> [2k + S((-DF = 1)]
Z 2(1-9)

k=2

oo

[2k = 8(=D* = D] pt1
+) sy N e DY bl

k=1

AT (g, Ag, O) Y|

—1k —
< Z [2k + 6((—1D)"* —1)]

- 2(1-19)
O [2k — 8((—1)* — )]
+Z 2(1—06)

AL* Ay, Agy £) Yo by < 1.

Since f € HSs- (1,42, 4,d, [a;, B;], 8), therefore by Theorem 2.3,I,(f (2)) € HSs- (A1, 42,4, d, [a;, B;], 8).

Remark 1. Substituting g =s +1,¢; =1(i=1,---,s+1) ,f;=1(G =1,+-,s), l, =d=0and 4, =¢ =1
into our findings, the results match those obtained by AL-Khal and Al-Kharsani [3].

Conclusion
In conclusion, the operator has enabled the creation of a new class of symmetric, complex-valued harmonic

; ; ; PSR, ; ; maq,s
functions. This research defines a class of harmonic univalent functions using the operator 2),11,,12,{’,(1 [a;, Bj]-

presenting detailed findings on their coefficient bounds, distortion bounds, inclusion criteria, and closure
properties under integral operators.
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