African Journal of Advanced Pure and

&~ Ve tyg, ) ) »
206 Applied Sciences (AJAPAS) ; ’, \
.@“ @_ Online ISSN: 2957-644X C L2 R
“- . Volume 4, Issue 2, April - June 2025 3t 3 zD
Page No: 100-117 )
AJAPAS Website: https://aaasjournals.com/index.php/ajapas/index ‘
IS1 2024: 0.877 SJIFactor 2024: 6.752 1.62 sad) 8l Jalaa

Super Convergent Finite Beam Element for Torsional Vibration
of Open Thin-Walled Vlasov Beam under Torsional Excitations

Algasim M. Kamour , Mohammed A. Hjaji >, Hasan M. Nagiar °
123 Applied mechanics division, Department of Mechanical and Industrial
Engineering, University of Tripoli, Faculty of Engineering, Tripoli, Libya

C 5k o e adala D (i gudld A Jlad A i) 31 R Gl (38 3 gasa A e yaic
A gV U cal jlaad) 38

JIAJ\L)“A‘ @\AA.“JA;.A« J}A\Se.ulu
Ll ¢l yha ¢l yha dmala cApunigl) IS e lial) 3 4SSl duigl) and dadnlail) KailSaal) duad 321

-

“Corresponding author: m.hjaji@uot.edu.ly

Received: February 20, 2025 |  Accepted: April 16,2025 | Published: April 24, 2025

Abstract

A highly accurate finite beam element is developed for the steady state torsional-warping dynamic analysis of
open thin-walled doubly symmetric Vlasov beams subjected to various harmonic torsional and warping moments.
The governing dynamic equation and associated boundary conditions for torsional-warping response is derived
through Hamilton variational principle. The formulation is based on Vlasov beam theory and incorporates both
warping deformation and warping inertia effects. From the resulting torsional equation, the closed form solution
is exactly obtained. A set of shape functions developed based on the exact solution of the field torsional equation
is utilized to formulate the finite beam element. The two-noded beam element, with four degrees of freedom per
element, effectively captures the quasi-static and steady-state torsional responses of open thin-walled doubly
symmetric beams under harmonic torsional excitations. Additionally, it is used to extract the natural torsional
frequencies and mode-shapes from the steady state dynamic response. The results obtained from the finite-
element formulation are evaluated and verified by comparing them with well-established finite-element solutions
and exact solutions available in the literature. The present beam element validity is demonstrated through several
numerical examples, with results exhibiting excellent agreement with exact solutions available in the literature
and Abaqus and Galerkin finite element models, achieved at a significantly reduced computational and modeling
cost.
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Introduction and Objective

Thin-walled members are widely utilized in the design of various structural components, including aerospace
structures, steel buildings, bridges, ship and marine frames, and truck chassis. These beams, when subjected to
cyclic harmonic torsional excitations, are susceptible to fatigue failures. Under such loads, the overall torsional
response of a thin-walled beam consists of two parts: (a) a transient torsional response, which occurs at the onset
of the excitation and diminishes rapidly due to damping, and (b) a steady-state torsional response, which persists
over time. While the transient response has minimal significance for fatigue design, the steady-state response is
important and serves as the primary focus of this study. This paper aims to develop an exact closed-from solution
and efficient finite beam element solution that accurately captures and isolates the steady-state torsional-warping
dynamic response of open thin-walled doubly symmetric beams. The proposed finite element solution can account
for the quasi-static and steady-state torsional dynamic responses. Furthermore, it is also predicting the torsional
eigenfrequencies and eigenmodes of the given thin-walled beams.

Literature Review on Finite Element Solutions

In general, finite element formulations are classified into three categories of shape functions: (1) approximate
polynomial interpolation functions, (2) shape functions derived from the exact solution of static equilibrium
equations, and (3) shape functions based on the exact solution of dynamic equations of motion. Formulations
using approximate shape functions are most common, as seen in the works of [3-5]. Kameswara et al. [3] utilized
the finite element method to analyze the torsional vibration of long thin-walled open-section beams on elastic
foundations. Chen and Tamma [4] developed a finite element method for analyzing thin-walled open members
subjected to constant transverse loads, utilizing assumed linear and cubic displacement shape functions along with
an implicit, unconditionally stable integration scheme. Aminbaghai et al. [5] developed a formulation for non-
uniform torsion in thin-walled beams, capturing the influence of variable axial force and secondary torsion-
moment deformation. Additionally, the transfer matrix method was used to develop a finite beam element for
static and dynamic analysis.

Finite element formulations based on the exact solution for static equilibrium equations, as seen in references [6-
9] and more recently [10], offer the advantage of avoiding locking issues, which can arise with polynomial
interpolation functions. In Mei [6], a finite element was developed for coupled free vibration analysis of thin-
walled beams, incorporating warping effects using shape functions derived from static equilibrium solutions. Hu
et al. [7] introduced a finite element formulation for coupled bending-torsional dynamic behavior of thin-walled
beams with asymmetric cross-sections, using interpolation functions based on static differential equilibrium
solutions. Mohareb and Nowzartash [8] developed a finite beam element formulation for torsional analysis of
thin-walled beams with open cross-sections, using exact static solutions based on Saint-Venant and Vlasov
theories. This approach is grounded in the generalized Timoshenko-Vlasov beam theory. Hjaji and Mohareb [9]
introduced a super-convergent finite beam element solution for coupled flexural-torsional analysis of
monosymmetric thin-walled open beams under general static forces, incorporating warping stiffness and shear
deformation effects. Recently, Hjaji et al. [10] formulated an exact finite beam element solution for the torsional-
warping coupled static response of doubly symmetric open thin-walled beams.

For dynamic equations of motion, finite element formulations based on exact solutions include the works of
references [11-12]. Hjaji and Mohareb [11] developed a super-convergent two-noded finite beam element for
dynamic response analysis of monosymmetric thin-walled I-beams under harmonic flexural and torsional loads,
considering the effects of Saint Venant and warping torsion translational and rotary inertia and the coupling
between bending and torsion. Hjaji et al. [12] developed a super-convergent finite beam element formulation for
the torsional-warping dynamic coupled analysis of thin-walled open doubly symmetric beams under various
harmonic torsional and warping moments. Their formulations are based on a generalized Vlasov-Timoshenko
beam theory, which accounts for shear deformation effects due to non-uniform warping.

Finite element formulations based on approximate shape functions involve spatial discretization errors and require
finer meshes to converge to the correct solution. In contrast, formulations using exact solutions have two key
advantages: (1) they eliminate discretization errors inherent in conventional interpolation schemes and converge
to the solution with fewer degrees of freedom, and (2) they are free from shear locking. This paper aims to establish
the exact closed-form and efficient finite beam element solutions for the torsional dynamic analysis of open thin-
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walled Vlasov beams with doubly symmetric cross-sections, subjected to various harmonic torsional and warping
moments. The proposed approach employs the exact shape functions that fully satisfy the torsional field equation.
Initially, exact closed-form torsional solutions for thin-walled beams under harmonic torsional and warping
moments are derived for various boundary conditions. Subsequently, an efficient finite beam element formulation
is developed, utilizing these exact shape functions to model torsional and warping deformations.

Kinematic Functions

The geometry and coordinate systems for thin-walled beam with doubly symmetric open section are shown in

Figure (1). Two sets of coordinate systems are considered in the present formulation, the first set is the Cartesian

coordinate system (X,Y,Z), where X axis is the beam longitudinal axis while Y, Z axes are the principal axes

passing through the section centroid C. The second set is the local coordinate system (s, n, Z), where coordinates

n and s are measured along the normal and tangent to the middle surface at the arbitrary point p(y,z), situated on

the mid-surface of the cross-section. The formulation presented here is grounded on the following core

assumptions: :

1. The thin-walled beam cross-section is open doubly symmetric,

2. The beam is linearly elastic and prismatic,

3. Strains and rotations are assumed to be small,

4. The cross-section is assumed to remain undeformed in its own plane, in accordance with Vlasov’s first
assumption, Vlasov [1],

5. The steady state torsional response is only pursued.
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Figure 1: Thin-walled doubly-symmetric beam under various dynamic torsional and warping moments.
Based on the above assumptions and considering that the doubly symmetric open thin-walled beam undergoes
torsional deformation only, the displacement functions w, (x, t), v,(x,t) and w;,(x,t) represent the torsional
deformation at an arbitrary point p(y, z) are given by:

u,(x,t) = w(s)p'(x,t), v,(x,t) = —z(s)p(x,t), and w,(x,t) = y(s)p(x,t) @
where ¢ (x, t) is the torsional displacement, x(s) and y(s) are the coordinates of arbitrary point p(y, z) along the

principal axes Y and Z, respectively, w(s) = fs h(s)ds is the warping function of the cross-section defined by
Vlasov (1960), in which h(s) = x(s)(dy/ds) — y(s)(dx/ds) is the perpendicular distance from the shear center
S, to the tangent to the mid-surface at point p(y, z). The present formulation is focused on linear response of the
thin-walled beams under small displacements, the non-zero normal strain is given as:

_ 9up

= w(s)¢"(x, 1) @

gxx ax -

Hamilton Variational Principle
To formulate the torsional dynamic field equation, the form of Hamilton’s principle is given as:

fff §(T — M) dt = fff STdt — fff SU+V)dt =0, fordp(x,t)=0att=t, =t ©)

where, T represents the total kinetic energy of the thin-walled beam, while IT denotes the total potential energy,
which is the combination of the elastic strain energy U stored in the deformed beam and the potential energy V
associated with applied harmonic torsional and warping moments. The symbol § indicates the variation operator,
and the integration is carried out over the time interval from t; to t,. The expression for the first variation of the
total kinetic energy 6T is presented as follows:

8T = [ [, pluySu, + 1,80, + ,0w,] dAdx = [ p[C,,$'69’ + AIZp5¢] dx @)
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where C,, is the warping constant defined by C,, = fA (w(s))?dA, the polar radius of gyration about the shear

center is I2 = (Iy + IZ)/A, in which A is the area of the cross-section, and p is the material density,
The first variation of the internal strain energy 6U is given by:

U = [ [, E ey, 0ey,dAdz + [, G]¢'5¢'6z = [[EC, ¢"6¢" + G$'6¢'] dx (5)

in which the second term in equation (5) is the contribution of Saint Venant shear strain, E is the modulus of
elasticity, G is the shear modulus, and J is the St. Venant torsional constant. All primes denote derivatives with
respect to space coordinate x whereas dots denote the derivatives with respect to time t.

The variation of potential energy 6V due to the applied harmonic torsional moment m,(x, t) along beam axis
and concentrated torsional moments M, (x, t) and concentrated warping moments M,, (x, t) applied at beam ends
(i.e., x = 0,L) is given as:

SV = [ m(x, )8 (x,t) dx + [My(x, )8 (x, ) + M, (x, )¢ (x, )] (6)

In equation (6), m,(x, t) is the harmonic distributed torsional moment, M, (x, t) are the harmonic concentrated
torsional moments and M,, (x, t) are the harmonic concentrated warping moments applied at beam ends (i.e., x =
0, L). All applied torsional moments are assumed to have the same sign convention as those of the end torsional
deformations (Fig. 1).

From equations (4-6) and by substituting into equation (3), performing integration by parts with respect to time;
evoking the stationary condition of the Hamilton’s functional; noting that all the variations of the coefficients at

the time limits t; and ¢, are zero, i.e., ¢ (z, t)lii = 0, one obtains the torsional dynamic field equation as:

PAIZG(x,t) — pCyd” (x,8) + EC,d"" (x,8) — G] " (x,t) = m,(x, t) (7

The related boundary conditions are obtained as:
[ECd"" — G]¢' =M, (x, )]§56¢(x, t)|5 = 0 8
[EC,@" — My, (x, )56 (x, t) |5 = 0 ©)

Equation (7) presents the governing field equation for the torsional vibration of open thin-walled Vlasov doubly
symmetric beam under distributed harmonic torsional and warping moments. It shows that the warping not only
influences the deformation of thin-walled beam but also impacts its dynamic behavior due to the associated mass
distribution, in which the warping inertia is accounted for in the governing field equation for a thin-walled beam
under distributed harmonic torsional loading.

Expressions for Applied Moments and Displacements
The thin-walled beam is assumed to be subjected to distributed harmonic twisting moment m,(x,t) and
concentrated twisting moment M, (x, t) and warping moment M, (x, t) applied at beam ends as:

My (%, 8), My (x, ), My, (x, 8) = [, (x), My (x), My, (x)] " (10)

Under the given harmonic torsional moments, the torsional rotation function ¢(z, t) corresponding to the steady-
state component of the dynamic response is assumed to take the form:

P(x,t) = p(x)e' (11)
in which i = v/—1 is the imaginary constant, ¢ (x) is the torsional space function. Since the present formulation
is designed to capture only the steady-state dynamic response of the system, the torsional rotation function
proposed in equation (11) excludes the transient component of the dynamic response. From equations (10-11) and
by substituting into equation (7), one obtains:

EC,D* ¢(x) — pAQ*I; ¢(x) + (pQ*C,, — G))D? p(x) = m,(x) (12)

and the boundary conditions are obtained as:
[EC,&" — /&', ()].6¢ )|, =0 (13)
[EC,$" — M, (0)],66' ), = 0 (14)

where D is the differential operator, i.e., D? = d?/dz?, and D* = d*/dz*.
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Exact Homogeneous Solution for Torsional Equation
The homogeneous solution of the field equation (12) is obtained by setting the loading term in the field equation
to zero, i.e., m,(x) = 0. The solution of the torsional rotation space function ¢ (x) is then assumed to take the
following form:

d(x) = A;e™* fori=1,23,4 (15)
From of space torsional function postulated in equation (15), by substituting into the torsional equation (12), one
obtains the quartic algebraic equation as:

EC,m! + (pQ%C,, — G))m? — pAQ?IZ2 = 0 (16)
The resulting equation (16) is solved for constants yielding the roots as:
1/2
—(pnzcw—cj)+J(pnzcw—cj)2+4EchA921§

mlz = i = iﬂ y and

, 2ECy,

1/2
(pQZCW—G])+\/(pQZCW—G])2+4ECWpA9.21§
ms, = *i = tia

2ECy,

It is noted that, the four roots (m; for i = 1,2,3,4) are distinct and the homogeneous solution for torsional rotation
function ¢ (x) is obtained as:

¢ (x) = c; cosh(Bx) + ¢, sinh(Bx) + ¢5 cos(ax) + ¢,sin (ax) a7
where ¢; for i = 1,2,3,4 are unknown integration constants which can be obtained from the problem boundary

conditions. The exact homogeneous solution related to steady state torsional response presented in equation (17)
can be written in matrix form as:

d(x) = (X () hxalClaxa (18)

where (¥ (x))1x4 = (cosh(Bx) sinh(Bx) cos(ax) sin(ax))ixs, and (Cixa =(C1 €2 €3 Ca)yyy.

Finite Element Formulation

The developed finite beam element is designed to analyze the steady state torsional response of open thin-walled
doubly symmetric beams subjected to various harmonic torsional and warping moments. The two-noded finite
beam element, with four degrees of freedom per element (Fig. 2), is formulated using exact shape functions that
precisely satisfy the homogeneous solution of the torsional field equation. These functions are utilized to derive
the exact stiffness and mass matrices, as well as the load potential energy vector for the beam element.

z
A
0; 0;
----- - X
ot T
Node i Node j

Figure 2: Two-noded thin-walled beam element for torsional-warping response.

Formulating of Exact Shape Functions

To relate the torsional displacement ¢ (x) to nodal torsional displacements, the vector of unknown integration
constants (C),xs ={c; C2 €3 Ca),,, is represented in terms of torsional rotation and rate of torsional
displacement (Wy)i1xa = (0, D1 0, D,),,, by applying the following conditions ©; = ¢(0), &, = ¢'(0),
0, = ¢(l,), and &, = ¢'(l,),. This leads to:

6, §(0) (x(0))1x4
_ )% _ ¢'(0) _ (X' (0))1x4 _
{Welaxs = 0, 13w = L)) {Claxs = [FlaxalClaxa (19)

P2 ax1 5’(16) i (X' (Le))1xa ixa
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1 0 1 0

0 B 0 a
cosh(Bl,)  sinh(Bl,) cos(al,) sin(al,)
Bsinh(Bl,) pBcosh(Bl,) —asin(al,) acos(al)l,,,
From equation (19), by substituting into equation (18), one obtains:

d(x) = )15l Flaxal®elaxa = (H())1xa{%elaxa (20)

where (H(x))1xa = {x(%))1xa[Flz14 is the exact shape function matrix for the torsional-warping response of
open thin-walled doubly symmetric beams, it is observed that the shape functions presented in equation (20)
precisely satisfy the homogeneous solution of the torsional field equation.

in which [Flyxs =

Energy Expressions in Terms of Nodal Torsional Displacements

The expressions for the variation of Kinetic energy, strain energy, and the potential by applied harmonic torsional
and warping moments, along with the axial static force, are derived in terms of the nodal degrees of freedom. This
is achieved by substituting equation (20) into equations (4-6), resulting in the following:

8T = —(6%e)1xa (02 [,(pCoy + PAIZ) {H () Jarcs (H (¥))1calx ) {Weara € dx (21)
8U = (8%, )1a ([ TECW " () asa (H" (@))1xa + GJH' ()}axs $H'(0))1a]) Wedaxs €¥dx  (22)
6V = (6We)1><4 (fole mx(x){H(x)}Alxl dx + [Mx(x){H(x)}zlxl + MW(X){H’(X)}4X1];E) eiﬂt (23)
From equations (21-23), by substituting into Hamilton’s variational principle (eqn. 3), one obtains:
([Kelaxa — QP [Mc]axa) (Wedaxa = {Fodaxa (24)

in which, the stiffness matrix for beam element [K,],,is given by:
le

[Kelaxa = f [GJ{H'(x)}ax1 (H'(X))1x4 + ECy, {H" () }ax1(H" (x))1xa] dx
0

The mass matrix for beam element [M, ], i given by:

le
Melues = [ “GATE = pGH G s (HGreadn
0
The element load vector {F,}, is given by:

lg - _
{Felax1 = f m, () {H (x)}4x1 dx + [Mx(x){H(x)th + Mw(x){H'(x)}4Xl]:e
0

The elastic stiffness and mass matrices, along with the load vector for a one-dimensional, two-noded thin-walled
beam element with two degrees of freedom per node, are computed for torsional vibration analysis using the exact
shape functions derived in this formulation.

Galerkin Finite Element Formulation
The trial solution is assumed to take the form:

¢ (x) = ?:1 N; (x) u; (25)
where N;(x) are the shape functions for beam element, and u, = ¢4, u, = ¢4, us = ¢y, and u, = ¢3.

The weak form is obtained by multiplying the governing equation (13) by the weight function N;(x) as:
Jo NiGO[ECLD* $(x) = pAQZIZ B(x) + (pQ2C,y — GID? $(x) — ()] dx = 0
By integrating the previous equation over the beam element length [, to reduce the order of derivatives, and then
applying the related boundary conditions presented in (14) and (15), leads to the following system:
([Rel, s — 22[Me, ., ) fuedens = {Fe), (26)
where [K,], , is the stiffness matrix for beam element, [M,], , is the element mass matrix, {F,},__is the vector

od applied forces, and {u,},«; is the vector contains the nodal displacements and rotations obtained from Galerkin
finite element formulation.

In which, the element stiffness matrix [K.], , is obtained by:

_ S d?N;(x) d?N;(x) dN;(x) dN;(x)

K = E : / - .

[ 3]4><4 ZL [ CW dx? dx? + G] dx dx dx
j=
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The element mass matrix [M,], , is given as:

_ 5l dN; (x) dN; (x)
[Me]4x4=; fo [pAlgNi(x)Nj(x)+ PCw— é—x]dx

while the element force vector {F,}, is obtained as:

_ te _ _ b [ dNGOT
Folps = [ N @ax - (LN, + [0 =]
0 0
For C ! problem, the approximate shape functions N, (x), N,(x), N3(x) and N,(x) in element local coordinates
are given as:
N, (x) = %(2)53 —3x21, + 13) Ny(x) = é(x3le —2x212 + xI3)

Ni(x) = é(—2x3 +3x21,), and N,(x) = %(x3le — x212) @27

These shape functions ensure both displacement and rotation continuity at the element nodes. Substituting
equation (27) into stiffness, mass matrices and force vector to obtain:

(12 6 -1z 6 6 -1 6 -1
3 2 —_— —_— R J—
le L 13 12 5l 10 51, 10
5 2 -6 2 -1 -2, 1 le
— Z e 21 10 15 10 30
[Ke] =ECy -12 -6 12 -6 +G/ 6 1 =6 1]’
A T - A 7 5l 10 5lg 10
6 2 =6 4 Sl 1 -2
L2 L 12 L 10 30 10 15
— 2 24
-13l, —111§ —9le 1315 -6 -1 6 -1
35 210 70 420 5l 10 51, 10
-113 -1 -1313 1§ -1 =20, 1 le
— 420 140 2 10 15 10 30
M,| = (pAQ2I2 210 105 + (pQ“C, and
1] = paezip)| 20 1o 2w ls(eic,)| 8 T,
70 420 35 210 5l 10 5l 10
1313 13 1113 -3 -1l 1 -2l
L 420 140 210 105 4 10 30 10 15
mO)le | —
M, (0
e 1 M,.(0)
ﬁ(x).lé_M (O)
the vector of applied forces is given as: {F,} = m(f)l o
e 4 M,(Le)
“mE)I2 | —
T+ M (L)

Numerical Examples and Validation

This section presents two examples for thin-walled beams with doubly symmetric open cross-sections, subjected
to various harmonic torsional and warping moments under different boundary conditions, to demonstrate the
validity, accuracy, and applicability of the developed exact finite two-noded thin-walled beam element. The beam
element is utilized to: (a) compute the steady-state torsional dynamic response of the thin-walled beam under
specified torsional excitations, (b) capture the quasi-static torsional response of the thin-walled beam under
torsional excitation having very small exciting frequency, and (c) predict the natural torsional frequencies of the
thin-walled beam. The formulation is based on shape functions that exactly satisfy the exact homogeneous solution
of the torsional field equation. This approach eliminates mesh discretization errors commonly encountered in
conventional interpolation schemes used in finite element solutions, allowing convergence with a minimal number
of degrees of freedom. The torsional results obtained from the present finite beam element (with two degrees of
freedom per node) are compared to exact solutions and finite element results available in the literature.

Example (1): Static and Dynamic Responses - Validation

In this example, a cantilever thin-walled I-beam with span of 2.40m subjected to three types of harmonic loading:
(i) uniformly distributed twisting moment m,.(x, t) = 2.40e**kN.m/m along the beam axis, (ii) concentrated
twisting moment M, (L,t) = 1.80e*kN.m, and (ii) concentrated warping moment M,,(L,t) = 2.0e'*kN.m
applied at the beam free end (x = L), as illustrated in Figure (3). The geometric and material properties of the
beam cross-section are provided in Table (1). To verify the accuracy of the exact closed-form solution and the
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finite beam element model developed in this study, the following tasks are required: (a) performing a quasi-static
torsional analysis using a very low excitation frequency, i.e., Q = 0.01w,,, and (b) investigating the steady-state
dynamic torsional response at exciting frequency of Q = 1.64w,,, Where w.,is the first natural torsional
frequency of the cantilever beam obtained as f;, = 35.26Hz.

Table 1: Geometric and properties of doubly symmetric thin-walled I-beam.

Parameter Value Parameter Value
E 200.0 x 10° N/m? 7420 x 10~°m?
G 77.0 x 10° N/m? 8000 kg/m3
L, 87.10 x 10~ %m* I, 18.82 x 10~ °m*
] 373.7 X 10~°m* Cy 268.0 X 10~°m®
. 13.5mm
mx(x‘ t) — 2.40eimkNm/m MX(L, t) = 1.80e"** kNm ; T
HHHHHH(HHH*_, X 8.0 252mm
< < MU‘NLM&&U.) OmmgQ l
L=2.40m 4—‘ ] I
M, (L, t) = 2.00e?t kNm? 203mm

Figure 3: A cantilever thin-walled I-beam under various twisting and warping moments.

The numerical results obtained from the exact closed-form solution and finite element formulation developed in
this study based on Vlasov beam theory are compared with those obtained from the exact solutions presented in
the literature and Abaqus finite beam element. In the Abaqus finite element model, the thin-walled beam with two
nodes is represented using 80 B310S elements (i.e., 567 dof) along the beam axis to achieve high accuracy. In
contrast, the present finite element model uses a single two-noded beam element (i.e., 4 dof) to match the exact
solution. Although the present finite beam element results are obtained using a single beam element, five beam
elements with 12 degrees of freedom are used for a more detailed comparison with the Abaqus solution, in order
to demonstrate better match with the nodal results.

Quasi-Static Analysis for Torsional Response

To achieve the quasi-static torsional response of a cantilever thin-walled beam under various harmonic twisting
and warping moments, the excitation frequency Q is set significantly lower than the first natural torsional
frequency, specifically Q = 0.01w; = 2.215rad/sec. Table (2) presents a comparative analysis of the quasi-

static results for torsional rotation angles ¢(L) and warping functions ¢’(L), demonstrating the accuracy of the
finite element solution (FES) in modeling the torsional behavior of thin-walled cantilever I-beams. The results
exhibit a high degree of agreement across models, with the static solutions aligning closely with those reported
by Hjaji et al. [12] and Seaburg et al. [2]. Notably, the results from the present FE solution and those from Hjaji
et al. [12] and Abaqus mode (AFS) are nearly identical, indicating the reliability of these computational

Table 2: Static results for torsional rotation angle ¢ (L) and warping function ¢’ (L) for thin-walled
cantilever I-beam under various twisting and warping moments.

Type of load Function | Hjajietal. | Seaburg Abaqus Present
(x1073) [12] etal. [2] FES FES

Distributed twisting (L) -86.668 -86.129 -86.994 -86.129

moment m, (x, t) ¢'(L) -40.420 -40.275 -40.566 -40.276

End twisting moment d(L) -69.911 -69.679 -69.935 -69.679

M,(L,t) ¢'(L) -41.536 -41.619 -41.567 -41.619

End warping moment d(L) -46.151 - -46.185 -46.243

M, (L t) ¢'(L) -48.080 - -48.112 -47.989

Various moments m,(x, t), d(L) -202.73 - -203.10 -202.05

M,(L,t), and M,, (L, t) ¢'(L) -129.83 - -130.20 -129.88

approaches. Minor deviations between the present FE solution (FES) and other models likely arise from shear
deformation effects, which are considered in Hjaji et al. [12] and Abaqus (AFS) but not in Seaburg et al. [2] and
FES. Excellent static results for the nodal torsional angle 8,, and warping deformation function @&, (for n =
1,2,3,4,5) are achieved using the proposed finite element formulation with a single beam element and 4 degrees
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of freedom. However, for a broader comparison with the Abaqus finite element solution, which employs 80
B310S elements and 567 degrees of freedom, five finite elements are utilized for the sake of comparison. Figure
(4) illustrates the nodal torsional rotation 6,, and warping deformation function @, for the cantilever 1-beam
subjected to various harmonic twisting and warping moments. The results, including the exact solutions by Hjaji
et al. [12], Seaburg et al. [2], Abaqus finite element solutions, and the proposed finite element solution, are
overlaid for comparison. It is evident that the proposed finite element solution exhibits excellent agreement with
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Figure 4: Static torsional response for cantilever thin-walled beam under various torsional and warping moments.

the other solutions. This alignment naturally arises because the present finite element solution employs shape
functions that precisely satisfy the homogeneous form of the torsional equation are used. As a result, this approach
effectively eliminates the discretization errors commonly introduced in traditional finite element formulations.
Overall, the present FE solution effectively captures the static torsional behavior of thin-walled members.
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Dynamic response analysis

The dynamic response analysis focuses on evaluating the nodal torsional rotation angle and warping deformation
function at the free end of a cantilever I-beam subjected to various harmonic torsional and warping moment loads,
with exciting frequency Q = 2.232w,; = 494.4 rad/sec, is summarized in Table (3). The steady-state dynamic
results obtained from the present finite element solution (FES), using a single beam element with four degrees of
freedom per element, are compared with the exact solution provided by Hjaji et al. [12], and Abaqus finite element
model (AFE) employing 80 B310S elements with 567 degrees of freedom for enhanced accuracy. It is noted that,
the dynamic response results highlight the close agreement between these three solutions, exhibiting the reliability
of the present finite element solution (FES). Notably, the present FE solution demonstrates consistent
performance, with deviations observed to be within acceptable limits when compared to established references.

Table 3: Dynamic results of torsional rotation angle ¢ (L) and warping function ¢’ (L) for thin-walled
cantilever I-beam under various twisting and warping moments.

Tvpe of load Function | Hjajietal. Abaqus Present

yp (x1073) [12] AFE FES
Distributed twisting P(L) 24.688 24.652 24.675
moment m,(x, t) ?'(L) 15.636 15364 | 15508
. o (L) -11.266 -11.330 -11.621

End twisting moment M, (L, t) —

¢'(L) 2.8879 2.8403 2.4464
End warping moment L) 3.2087 31559 | 2.9275
M, (L 1) 'L 29904 | 29.808 | 29.169
Various moments m,(x, t), P(L) 16.636 16.478 15.982
M,(L,t), and M,,(L, 1) ?'(L) 48.430 48012 | 47.123

To give comprehensive comparison, the dynamic response results of the nodal torsional rotation 6,, and warping
deformation function @, (for n = 1,2,3,4,5) for the given cantilever beam are plotted against the beam axis x as
illustrated in Figures (5). The nodal degrees of freedom results based on three solutions: the finite element solution
(FES) developed in this study using five beam elements with 12 dof, exact solution (ES) in Hjaji et al. [12], and
Abaqus finite element (AFE) using 80 B310S beam elements, are plotted on the same diagrams for the
comparison. It is noted that, the present finite element provides an excellent agreement with those based on Abaqus
solution at a fraction of the computational and modelling cost. This outcome is expected, as the present beam
element is constructed using shape functions that precisely satisfy the exact solution of the torsional field equation,
effectively eliminating discretization errors encountered under other interpolation schemes. This emphasizes the
accuracy of the proposed solutions in capturing the steady state dynamic torsional response of thin-walled beams
under complex dynamic loading scenarios.
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Figure 5: Dynamic torsional response for cantilever thin-walled I-beam under various
torsional and warping moments.

Example (2): Torsional natural frequencies

To attain the accuracy of the present finite element formulation to predict the natural torsional frequencies, a
3000mm thin-walled beam subjected to distributed harmonic twisting moment m,(x,t) = 1.60e“**kNm/m
applied along the beam coordinate x is shown in Figure (6). The beam with clamped-free (CF), simply-supported
(SS) or fork-fork, clamped-clamped (CC), and clamped-pinned (CS) or clamped-fork boundary conditions are
considered in this example. For the case of simply-supported boundary conditions, the fork-type end supports are
used, in which the beam is unrestrained along its length while the fork supports prevent the cross-section from
torsional rotation and allow free warping deformation. The material and geometrical properties of the steel beam
are given in Table (4). For verification purposes, it is required to (a) conduct the steady state dynamic analysis for
predicting the first three natural torsional frequencies, (b) compute the quasi-static response analysis by adopting
an exciting frequency Q = 0.01w,,, and (c) establish the steady state dynamic response for exciting frequency

Q = 150rad/sec.

Table 4: Geometric and material properties of thin-walled beam.

Parameter Value Parameter Value
E 200GPa G 78GPa
A 7200mm? p 7800kg /m3
Ly, 41.24 x 10°mm* ] 24.0 x 103mm*
1,, 8.50 X 10mm* C, 87.51 x 109mm?®
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Figure 6: A thin-walled beam under distributed harmonic twisting moment.

The numerical results obtained from the present finite element formulation are compared with corresponding
results from other exact solutions available in the literature, as well as with Galerkin and Abaqus finite beam
element solutions. In the Abaqus model, the thin-walled beam is discretized using 100 B310S elements, resulting
in a total of 707dof to achieve the desired level of accuracy. In the Galerkin-based finite element approach, the
beam is divided into fifty elements, each with four DOF, yielding a total of 102 dof. In contrast, the present finite
element formulation uses a single beam element (i.e., 4 dof) to approach the exact results. Even though, the present
finite element solution captured the exact nodal results by using one beam element for clamped-free beam and
two elements for other beam boundary conditions, this example utilizes six beam elements with14 dof to exhibit

clear observation with Abaqus finite solution based on 100 beam elements (707 dof) and Galerkin finite element
model based on 50 beam elements.

Natural Torsional Frequencies

Under the distributed twisting moment m,.(x,t) = 1.60e**kNm/m, the natural frequencies associated with
torsional-warping response are identified through steady-state torsional response analysis. In order to extract the
first three natural torsional frequencies for the given beam under clamped-free (CF), simply-supported (SS) or
fork-fork, clamped-clamped (CC) and clamped-pinned (CS) or clamped-fork boundary conditions, the exciting
frequencies f (in Hz) are varied from near zero to 600Hz, 1800Hz, 2000Hz and 800Hz, respectively. Figures in
(4) illustrate the torsional rotation angle ¢ (L/2) at beam midspan node (i. e., x = L/2) as functions of the exciting
frequency f. The natural torsional frequencies are determined from the peaks in the torsional rotation-frequency

relationship, as these peaks signify resonance. Similarly, peaks observed in the diagrams (Figure 7) serve as
indicators of the natural torsional frequencies for the beam.
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Figure 7: The first four natural torsional frequencies for thin-walled beam under torsional loading with various
boundary conditions.
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Table (5) is summarized the first three natural torsional frequencies, identified from these resonance peaks. It
compares the first three natural torsional frequencies obtained from three different solutions: the present finite
element and Galerkin finite element solutions which dis-accounting for shear deformation, while Abaqus finite
beam model which considers shear deformation due to bending. The results in Table (5) show that the natural
torsional frequencies predicted by the Abaqus finite element model (AFE) and Galerkin finite element (GFE)
differ slightly from those obtained using the present finite element (PFE) solution. It is noted that, the frequency
results obtained using Galerkin finite element are very close to the corresponding results computed using the
present finite element, while Abaqus beam element gives values less close to the present solution. This
discrepancy arises naturally because Vlasov beam represents the stiffest beam model (as they neglect shear
deformation effects), whereas the Abaqus finite beam analysis provides the most flexible representation due to its
consideration of numerous degrees of freedom. The discrepancies arise from the inclusion of shear deformation
effects in the Abaqus solution, which are not accounted for in the Vlasov beam theory. Moreover, the variation in
results arises because the present finite element utilizes an exact shape function that exactly satisfies the solution
of the torsional field equation, whereas the finite element solutions from Abaqus and the Galerkin approach rely
on approximate shape functions.

Table 5: The first three natural torsional frequencies for thin-walled beam with various boundary conditions.

Freq Clamped-free Simply-supported Clamped-clamped Clamped-pinned
N.o. PFE | AFE | GFE | PFE | AFE | GFE | PFE | AFE | GFE | PFE | AFE | GFE

1 26.58 | 27.04 | 26.57 | 52.05 | 52.75 | 52.05 | 93.28 | 92.01 | 93.29 | 69.96 | 70.61 | 69.96
105.4 | 104.9 | 105.2 | 348.2 | 341.2 | 348.2 | 464.2 | 444.8 | 464.2 | 201.3 | 198.5 | 201.7
252.2 | 247.8 | 251.4 | 902.3 | 880.7 | 922.7 | 1036 | 1018 | 1109 | 399.4 | 392.2 | 403.8

Static Response Analysis

The quasi-static analyzes of the torsional response of thin-walled beam subjected to distributed harmonic twisting
moment m,.(x, t) = 1.60e“*kNm/m are conducted by using very low exciting frequency (Q ~ 0.01w,) related
to the first natural torsional frequency of the given beams. Figures in (8) overlay the nodal torsional rotation angle
¢, and warping deformation function ¢,, of static torsional responses obtained from the present finite element
formulation with the exact solution of Seaburg et al. [2], Abaqus finite element solution using 100 B310S beam
elements (707 dof), and Galerkin finite element solution using 50 beam elements (102 dof). Although the proposed
finite element formulation with just two beam elements (6 dof) achieved excellent results, but six beam elements
with 14 dof are used for comparison purposes. The results exhibit excellent agreement among all four solutions.
It is clearly noted that, the present finite element results using six beam elements (14 dof) closely match those of
the Abaqus finite model, which uses 100 beam elements (707 dof) and Galerkin finite element based on 50
elements (102 dof). A gain, these results demonstrate the efficiency and accuracy of the proposed finite element
in capturing the static response of the given beam under various boundary conditions.
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Figure 8: Static torsional responses for thin-walled beam under distributed twisting moment and various

boundary conditions.

Steady State Dynamic Response

Figure (9) illustrates the steady-state torsional rotation and warping deformation responses of thin-walled beam
subjected to distributed harmonic twisting moment m,(x,t) = 1.60e“*kNm/m at exciting frequency Q =
150rad /sec. The nodal results for torsional rotation angle 6,, and warping deformation @, (n = 1,2,3,...,7)
derived from the proposed formulations are compared with those obtained using Abaqus finite beam model. The
comparison shows that the present closed-from solution and finite element using six beam elements (14 dof)
achieves excellent agreement with the Abaqus beam model, which utilizes 100 B310S elements (707 dof) and
Galerkin finite element solution based on 50 beam elements.
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Figure 9: Dynamic torsional responses for thin-walled beams under distributed twisting moment and
various boundary conditions.

Example (3) — Validation of Finite beam element Formulation

A thin-walled I-beam of length 6000mm is subjected to various torsional and warping moments; uniformly
distributed torsional loading m, (x,t) = 1.20e**kNm/m and concentrated twisting moments M,,(2m,t) =
1.80e“¥*kNm and M,,(5m,t) = 1.60e**kNm end warping moment M,,(6m,t) = 1.50e“**kNm? /m applied
as shown in Figure (10). The beam has fixed support at left end and unrestrained along its span except at the fork
support which prevents the beam cross section from torsional rotation and moving laterally but allows for the

warping deformation.

The geometric properties of the beam section are listed in Table (6). To assess the accuracy and efficiency of the
present finite beam element formulation, the quasi-static response is evaluated under a very low excitation
frequency Q = 0.01f;; = 0.3248Hz and steady state dynamic response with exciting frequencies Q = 120Hz,
where the first natural torsional frequency of the given beam is f;, = 32.48Hz.

Table 6: Geometric and properties of thin-walled I-section beam.

Parameter Value Parameter Value
E 200.0 X 10°N /m? G 78.0 X 10°N /m?
A 7389mm? p 8000kg/m3
L, 86.98 x 105mm? Ji 373.7 x 103mm*
L, 18.82 x 10°mm? Cw 267.7 x 10°mm®
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Figure 10: A thin-walled I-beam under various twisting and warping moments.

For validation purposes, the nodal static and dynamic results obtained from the finite element solution (FES)
developed in this study are compared with those from the well-established Abaqus model using the B310S beam
element. In the Abaqus simulation, 180 B310S beam elements are employed, resulting in a total of 1,267 degrees
of freedom (DOF) to minimize mesh discretization errors and ensure high accuracy. In contrast, the present finite
beam element formulation requires only six beam elements along the beam span, involving just 14 DOF in total.

Static Response Analysis

The quasi-static torsional warping response of the given thin-walled beam is evaluated using two distinct finite
element approaches: the present formulation, which utilizes only 14 degrees of freedom (DOF), and the Abaqus
finite beam element model, which employs 1,267 DOF. The static results for the nodal torsional rotation angle 6,
and the warping deformation function @, (forn =1, 2, 3, ..., 7) are presented in Figure 11. These results, derived
from both the present formulation and the Abaqus B310S beam model, are superimposed on the same plots for
direct comparison. As shown in Figure 8, there is excellent agreement between the results of the present model
using just six beam elements (14 DOF) and those of the Abaqus model using 180 elements (1,267 DOF). This
clearly demonstrates that the present finite element formulation can achieve high accuracy with a significantly
reduced number of degrees of freedom. Additionally, this indicates that the present finite element solution
effectively determines the eigenfrequencies of the given beams.
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Figure 11: Static torsional analysis of thin-walled I-beam under various twisting and warping moments .

Dynamic Torsional-Warping Response Analysis

The dynamic torsional warping response for the given beam subjected to various twisting and warping moments
under exciting frequency (f = 120Hz) are presented in Figure (12). The nodal torsional rotation 8, and warping
deformation @, (for n=1,2,3,...,7) obtained from the present finite element formulation, which is based on exact
shape functions, are compared with the results from the Abaqus finite beam model. The comparison reveals that
the present formulation, utilizing only six beam elements and 14 degrees of freedom, shows excellent agreement
with the Abaqus model, despite the latter using a significantly higher number of elements (i.e., 180 B310S
elements with 1,267 dof). This leads to conclude that, the computational efforts in the present finite element
solutions are several orders of magnitudes less than that of Abaqus beam model solution. This naturally results
from the fact that the present finite element formulation is based on the shape functions, which exactly satisfy the
homogeneous form of the dynamic governing torsional equation, which in turn eliminates discretization errors
encountered in finite element formulation.
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Figure 12: Dynamic torsional analysis of thin-walled I-beam under various twisting and warping moments

having exciting frequency f = 120Hz

Summary and Conclusion
Based on the results obtained in this study, the following concluding remarks can be drawn:

1. The governing field equation for the torsional-warping response and related boundary conditions for open
thin-walled Vlasov beams under harmonic torsional excitations is derived through Hamilton variational
principle.

2. The exact solution for the steady-state torsional response of thin-walled beams, developed in this study, has
been effectively utilized to construct a set of exact shape functions that precisely satisfy the homogeneous
form of the governing torsional equation.

3. The exact shape functions are used to formulate an efficient finite beam element for torsional-warping
response.

4.  An efficient and accurate finite beam element has been developed for open thin-walled beams with doubly
symmetric cross-sections, featuring two nodes and four degrees of freedom per element. This element is
capable of accurately capturing the response under various harmonic torsional and warping moment
loadings.

5. The present finite element solution is based on Vlasov beam theory, which neglects shear deformation effects
but incorporates warping deformation caused by non-uniform torsion.

6. The beam element eliminates discretization errors associated with other interpolation schemes and delivers
highly accurate results with a significantly reduced number of degrees of freedom.

7. The present finite element formulation effectively captures both quasi-static and steady-state torsional
responses of open thin-walled beams under harmonic torsional moments.

8. Italso successfully predicts the eigenfrequencies and eigenmodes from the steady-state torsional response.

9. The proposed finite element formulation demonstrates excellent agreement with Galerkin and Abagus beam
elements while requiring considerably less computational and modeling effort.
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