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Abstract  

A highly accurate finite beam element is developed for the steady state torsional-warping dynamic analysis of 

open thin-walled doubly symmetric Vlasov beams subjected to various harmonic torsional and warping moments. 

The governing dynamic equation and associated boundary conditions for torsional-warping response is derived 

through Hamilton variational principle. The formulation is based on Vlasov beam theory and incorporates both 

warping deformation and warping inertia effects. From the resulting torsional equation, the closed form solution 

is exactly obtained. A set of shape functions developed based on the exact solution of the field torsional equation 

is utilized to formulate the finite beam element. The two-noded beam element, with four degrees of freedom per 

element, effectively captures the quasi-static and steady-state torsional responses of open thin-walled doubly 

symmetric beams under harmonic torsional excitations. Additionally, it is used to extract the natural torsional 

frequencies and mode-shapes from the steady state dynamic response. The results obtained from the finite-

element formulation are evaluated and verified by comparing them with well-established finite-element solutions 

and exact solutions available in the literature. The present beam element validity is demonstrated through several 

numerical examples, with results exhibiting excellent agreement with exact solutions available in the literature 

and Abaqus and Galerkin finite element models, achieved at a significantly reduced computational and modeling 

cost. 

 

Keywords: Warping deformation,  exact shape functions,  Torsional response, efficient finite element. 

 

 الملخص 

ر عنصر عارضة محدود عالي الدقة للاستجابة الديناميكية للالتواء والفتل في الحالة المستقرة لعارضات فلاسوف ذات   ِّ طُو 

مقاطع عرضية مفتوحة مزدوجة التماثل ورقيقة الجدار المعرضة لعزوم الالتواء والفتل التوافقية المختلفة. استنُبطت المعادلة  

الفتل من مبدأ هاملتون للتغير. تستند  -اكمة والشروط الحدية المرتبطة بها لاستجابة الالتواءلعارضة فلاسوف الديناميكية الح

الصياغة إلى نظرية عارضة فلاسوف، وتراعي آثار تشوه الانحناء وقصوره الذاتي. ومن معادلة الالتواء الناتجة، يحُصل 

رت بناءً على الحل الدقيق لمعادلة الالتواء، لصياغة  على حل الشكل المغلق بدقة. تسُتخدم مجموعة من دوال الشكل، التي   ِّ طُو 

عنصر العارضة المحدود. يلتقط عنصر الشعاع ثنائي العقد، بأربع درجات حرية لكل عنصر، بفعالية الاستجابات الالتوائية  

فتل التوافقية. بالإضافة  شبه الساكنة والمستقرة للعارضات المفتوحة رقيقة الجدار مزدوجة التماثل تحت إثارات الالتواء وال
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إلى ذلك، يسُتخدم لاستخلاص الترددات الالتوائية الطبيعية وأشكال الأنماط من الاستجابة الديناميكية في الحالة المستقرة. تقُي م 

النتائج المُستقاة من صياغة العناصر المحدودة وتتُحقق من صحتها بمقارنتها بحلول العناصر المحدودة المُثبتة والحلول الدقيقة 

راجع العلمية. وتبُرهن العديد من الأمثلة العددية على صحة عنصر العارضة الحالي، حيث تظُهر النتائج توافقًا المُتاحة في الم

، وقد تحقق ذلك Galerkinو  Abaqusممتازًا مع الحلول الدقيقة المُتاحة في المراجع العلمية ونماذج العناصر المحدودة  

 بتكلفة حسابية ونمذجة مُنخفضة بشكل ملحوظ. 

 

 تشوه الفتل، دوال الشكل الدقيق، الاستجابة الالتوائية، العناصر المحدودة الفعالة. الكلمات المفتاحية:

Introduction and Objective 

Thin-walled members are widely utilized in the design of various structural components, including aerospace 

structures, steel buildings, bridges, ship and marine frames, and truck chassis. These beams, when subjected to 

cyclic harmonic torsional excitations, are susceptible to fatigue failures. Under such loads, the overall torsional 

response of a thin-walled beam consists of two parts: (a) a transient torsional response, which occurs at the onset 

of the excitation and diminishes rapidly due to damping, and (b) a steady-state torsional response, which persists 

over time. While the transient response has minimal significance for fatigue design, the steady-state response is 

important and serves as the primary focus of this study. This paper aims to develop an exact closed-from solution 

and efficient finite beam element solution that accurately captures and isolates the steady-state torsional-warping 

dynamic response of open thin-walled doubly symmetric beams. The proposed finite element solution can account 

for the quasi-static and steady-state torsional dynamic responses. Furthermore, it is also predicting the torsional 

eigenfrequencies and eigenmodes of the given thin-walled beams. 

Literature Review on Finite Element Solutions 

In general, finite element formulations are classified into three categories of shape functions: (1) approximate 

polynomial interpolation functions, (2) shape functions derived from the exact solution of static equilibrium 

equations, and (3) shape functions based on the exact solution of dynamic equations of motion. Formulations 

using approximate shape functions are most common, as seen in the works of [3-5]. Kameswara et al. [3] utilized 

the finite element method to analyze the torsional vibration of long thin-walled open-section beams on elastic 

foundations. Chen and Tamma [4] developed a finite element method for analyzing thin-walled open members 

subjected to constant transverse loads, utilizing assumed linear and cubic displacement shape functions along with 

an implicit, unconditionally stable integration scheme. Aminbaghai et al. [5] developed a formulation for non-

uniform torsion in thin-walled beams, capturing the influence of variable axial force and secondary torsion-

moment deformation. Additionally, the transfer matrix method was used to develop a finite beam element for 

static and dynamic analysis.  

Finite element formulations based on the exact solution for static equilibrium equations, as seen in references [6-

9] and more recently [10], offer the advantage of avoiding locking issues, which can arise with polynomial 

interpolation functions. In Mei [6], a finite element was developed for coupled free vibration analysis of thin-

walled beams, incorporating warping effects using shape functions derived from static equilibrium solutions. Hu 

et al. [7] introduced a finite element formulation for coupled bending-torsional dynamic behavior of thin-walled 

beams with asymmetric cross-sections, using interpolation functions based on static differential equilibrium 

solutions. Mohareb and Nowzartash [8] developed a finite beam element formulation for torsional analysis of 

thin-walled beams with open cross-sections, using exact static solutions based on Saint-Venant and Vlasov 

theories. This approach is grounded in the generalized Timoshenko-Vlasov beam theory. Hjaji and Mohareb [9] 

introduced a super-convergent finite beam element solution for coupled flexural-torsional analysis of 

monosymmetric thin-walled open beams under general static forces, incorporating warping stiffness and shear 

deformation effects. Recently, Hjaji et al. [10] formulated an exact finite beam element solution for the torsional-

warping coupled static response of doubly symmetric open thin-walled beams.  

For dynamic equations of motion, finite element formulations based on exact solutions include the works of 

references [11-12]. Hjaji and Mohareb [11] developed a super-convergent two-noded finite beam element for 

dynamic response analysis of monosymmetric thin-walled I-beams under harmonic flexural and torsional loads, 

considering the effects of Saint Venant and warping torsion translational and rotary inertia and the coupling 

between bending and torsion. Hjaji et al. [12] developed a super-convergent finite beam element formulation for 

the torsional-warping dynamic coupled analysis of thin-walled open doubly symmetric beams under various 

harmonic torsional and warping moments. Their formulations are based on a generalized Vlasov-Timoshenko 

beam theory, which accounts for shear deformation effects due to non-uniform warping.  

Finite element formulations based on approximate shape functions involve spatial discretization errors and require 

finer meshes to converge to the correct solution. In contrast, formulations using exact solutions have two key 

advantages: (1) they eliminate discretization errors inherent in conventional interpolation schemes and converge 

to the solution with fewer degrees of freedom, and (2) they are free from shear locking. This paper aims to establish 

the exact closed-form and efficient finite beam element solutions for the torsional dynamic analysis of open thin-
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walled Vlasov beams with doubly symmetric cross-sections, subjected to various harmonic torsional and warping 

moments. The proposed approach employs the exact shape functions that fully satisfy the torsional field equation. 

Initially, exact closed-form torsional solutions for thin-walled beams under harmonic torsional and warping 

moments are derived for various boundary conditions. Subsequently, an efficient finite beam element formulation 

is developed, utilizing these exact shape functions to model torsional and warping deformations.  

Kinematic Functions 

The geometry and coordinate systems for thin-walled beam with doubly symmetric open section are shown in 

Figure (1). Two sets of coordinate systems are considered in the present formulation, the first set is the Cartesian 

coordinate system (𝑋, 𝑌, 𝑍), where 𝑋 axis is the beam longitudinal axis while 𝑌, 𝑍 axes are the principal axes 

passing through the section centroid 𝐶. The second set is the local coordinate system (𝑠, 𝑛, 𝑍), where coordinates 

𝑛 and 𝑠 are measured along the normal and tangent to the middle surface at the arbitrary point p(y,z), situated on 

the mid-surface of the cross-section. The formulation presented here is grounded on the following core 

assumptions: :  

1. The thin-walled beam cross-section is open doubly symmetric,  

2. The beam is linearly elastic and prismatic,  

3. Strains and rotations are assumed to be small, 

4. The cross-section is assumed to remain undeformed in its own plane, in accordance with Vlasov’s first 

assumption, Vlasov [1],  

5. The steady state torsional response is only pursued. 

 
Figure 1: Thin-walled doubly-symmetric beam under various dynamic torsional and warping moments.  

 

Based on the above assumptions and considering that the doubly symmetric open thin-walled beam undergoes 

torsional deformation only, the displacement functions 𝑢𝑝(𝑥, 𝑡), 𝑣𝑝(𝑥, 𝑡) and 𝑤𝑝(𝑥, 𝑡) represent the torsional 

deformation at an arbitrary point 𝑝(𝑦, 𝑧) are given by: 

                 𝑢𝑝(𝑥, 𝑡) = 𝜔(𝑠)𝜙′(𝑥, 𝑡),      𝑣𝑝(𝑥, 𝑡) = −𝑧(𝑠)𝜙(𝑥, 𝑡),    and   𝑤𝑝(𝑥, 𝑡) = 𝑦(𝑠)𝜙(𝑥, 𝑡)                       (1) 

where 𝜙(𝑥, 𝑡) is the torsional displacement, 𝑥(𝑠) and 𝑦(𝑠) are the coordinates of arbitrary point 𝑝(𝑦, 𝑧) along the 

principal axes 𝑌 and 𝑍, respectively, 𝜔(𝑠) = ∫ ℎ(𝑠)𝑑𝑠 
𝑠

is the warping function of the cross-section defined by 

Vlasov (1960), in which ℎ(𝑠) = 𝑥(𝑠)(𝑑𝑦/𝑑𝑠) − 𝑦(𝑠)(𝑑𝑥/𝑑𝑠) is the perpendicular distance from the shear center 

𝑆𝑐  to the tangent to the mid-surface at point 𝑝(𝑦, 𝑧). The present formulation is focused on linear response of the 

thin-walled beams under small displacements, the non-zero normal strain is given as: 

                       𝜀𝑥𝑥 =
𝜕𝑢𝑝

𝜕𝑥
= 𝜔(𝑠)𝜙"(𝑥, 𝑡)                                                                                                 (2)                   

Hamilton Variational Principle 

To formulate the torsional dynamic field equation, the form of Hamilton’s principle is given as:  

 ∫ 𝛿(𝑇 − 𝛱)
𝑡2
𝑡1

𝑑𝑡 = ∫ 𝛿𝑇𝑑𝑡
𝑡2
𝑡1

− ∫ 𝛿(𝑈 + 𝑉)𝑑𝑡
𝑡2
𝑡1

= 0 ,     for 𝛿𝜙(𝑥, 𝑡) = 0 𝑎𝑡 𝑡 = 𝑡1 = 𝑡2                      (3) 

where, T represents the total kinetic energy of the thin-walled beam, while 𝛱 denotes the total potential energy, 

which is the combination of the elastic strain energy 𝑈 stored in the deformed beam and the potential energy 𝑉 

associated with applied harmonic torsional and warping moments. The symbol 𝛿 indicates the variation operator, 

and the integration is carried out over the time interval from 𝑡1 to 𝑡2. The expression for the first variation of the 

total kinetic energy 𝛿𝑇 is presented as follows: 

                        𝛿𝑇 = ∫ ∫ 𝜌[𝑢̇𝑝𝛿𝑢̇𝑝 + 𝑣̇𝑝𝛿𝑣̇𝑝 + 𝑤̇𝑝𝛿𝑤̇𝑝]𝐴

𝐿

0
𝑑𝐴𝑑𝑥 = ∫ 𝜌[𝐶𝑤𝜙̇′𝛿𝜙̇′ + 𝐴𝐼𝑜

2𝜙𝛿̇𝜙̇]
𝐿

0
𝑑𝑥                     (4) 
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where 𝐶𝑤 is the warping constant defined by 𝐶𝑤 = ∫ (𝜔(𝑠))2𝑑𝐴
𝐴

, the polar radius of gyration about the shear 

center is 𝐼𝑜
2 = (𝐼𝑦 + 𝐼𝑧)/𝐴, in which 𝐴 is the area of the cross-section, and 𝜌 is the material density, 

The first variation of the internal strain energy 𝛿𝑈 is given by: 

           𝛿𝑈 = ∫ ∫ 𝐸
𝐴

𝐿

0
𝜀𝑥𝑥𝛿𝜀𝑥𝑥𝑑𝐴𝑑𝑧 + ∫ 𝐺𝐽𝜙′𝛿𝜙′𝛿𝑧

𝐿

0
= ∫ [𝐸𝐶𝑤𝜙′′𝛿𝜙′′ + 𝐺𝐽𝜙′𝛿𝜙′]

𝐿

0
𝑑𝑥                      (5) 

in which the second term in equation (5) is the contribution of Saint Venant shear strain, 𝐸 is the modulus of 

elasticity, 𝐺 is the shear modulus, and 𝐽 is the St. Venant torsional constant. All primes denote derivatives with 

respect to space coordinate 𝑥 whereas dots denote the derivatives with respect to time 𝑡. 

The variation of potential energy 𝛿𝑉 due to the applied harmonic torsional moment 𝑚𝑥(𝑥, 𝑡) along beam axis 

and concentrated torsional moments 𝑀𝑥(𝑥, 𝑡) and concentrated warping moments 𝑀𝑤(𝑥, 𝑡) applied at beam ends 

(i.e., 𝑥 = 0, 𝐿) is given as: 

                        𝛿𝑉 =  ∫ 𝑚𝑥(𝑥, 𝑡)𝛿𝜙(𝑥, 𝑡)
𝐿

0
𝑑𝑥 + [𝑀𝑥(𝑥, 𝑡)𝛿𝜙(𝑥, 𝑡) + 𝑀𝑤(𝑥, 𝑡)𝛿𝜙′(𝑥, 𝑡)]0

𝐿                                (6)   

In equation (6), 𝑚𝑥(𝑥, 𝑡) is the harmonic distributed torsional moment, 𝑀𝑥(𝑥, 𝑡) are the harmonic concentrated 

torsional moments and 𝑀𝑤(𝑥, 𝑡) are the harmonic concentrated warping moments applied at beam ends (i.e., 𝑥 =

0, 𝐿). All applied torsional moments are assumed to have the same sign convention as those of the end torsional 

deformations (Fig. 1). 

From equations (4-6) and by substituting into equation (3), performing integration by parts with respect to time; 

evoking the stationary condition of the Hamilton’s functional; noting that all the variations of the coefficients at 

the time limits 𝑡1 and 𝑡2 are zero, i.e., 𝛿𝜙(𝑧, 𝑡)|𝑡1
𝑡2 = 0, one obtains the torsional dynamic field equation as:    

                         𝜌𝐴𝐼𝑜
2𝜙̈(𝑥, 𝑡) − 𝜌𝐶𝑤𝜙̈

′′(𝑥, 𝑡) + 𝐸𝐶𝑤𝜙
′′′′(𝑥, 𝑡) − 𝐺𝐽𝜙′′(𝑥, 𝑡) = 𝑚𝑥(𝑥, 𝑡)                                   (7) 

The related boundary conditions are obtained as: 

            [𝐸𝐶𝑤𝜙
′′′ − 𝐺𝐽𝜙′−𝑀𝑥(𝑥, 𝑡)]0

𝐿𝛿𝜙(𝑥, 𝑡)|0
𝐿 = 0                                        (8) 

  [𝐸𝐶𝑤𝜙" −𝑀𝑤(𝑥, 𝑡)]0
𝐿𝛿𝜙′(𝑥, 𝑡)|0

𝐿 = 0                                   (9) 

Equation (7) presents the governing field equation for the torsional vibration of open thin-walled Vlasov doubly 

symmetric beam under distributed harmonic torsional and warping moments. It shows that the warping not only 

influences the deformation of thin-walled beam but also impacts its dynamic behavior due to the associated mass 

distribution, in which the warping inertia is accounted for in the governing field equation for a thin-walled beam 

under distributed harmonic torsional loading. 

Expressions for Applied Moments and Displacements  

The thin-walled beam is assumed to be subjected to distributed harmonic twisting moment 𝑚𝑥(𝑥, 𝑡) and 

concentrated twisting moment 𝑀𝑥(𝑥, 𝑡) and warping moment 𝑀𝑥(𝑥, 𝑡) applied at beam ends as: 

                  𝑚𝑥(𝑥, 𝑡),𝑀𝑥(𝑥, 𝑡),𝑀𝑤(𝑥, 𝑡) = [𝑚̅𝑥(𝑥),𝑀𝑥(𝑥),𝑀𝑤(𝑥)]𝑒
𝑖Ω𝑡                                            (10) 

Under the given harmonic torsional moments, the torsional rotation function 𝜙(𝑧, 𝑡) corresponding to the steady-

state component of the dynamic response is assumed to take the form: 

                                        𝜙(𝑥, 𝑡) = 𝜙(𝑥)𝑒𝑖Ω𝑡                                                                (11) 

in which 𝑖 = √−1 is the imaginary constant, 𝜙(𝑥) is the torsional space function. Since the present formulation 

is designed to capture only the steady-state dynamic response of the system, the torsional rotation function 

proposed in equation (11) excludes the transient component of the dynamic response. From equations (10-11) and 

by substituting into equation (7), one obtains: 

                                 𝐸𝐶𝑤𝒟
4 𝜙(𝑥) − 𝜌𝐴Ω2𝐼𝑜

2 𝜙(𝑥) + (𝜌Ω2𝐶𝑤 − 𝐺𝐽)𝒟
2 𝜙(𝑥) = 𝑚𝑥(𝑥)                                  (12) 

and the boundary conditions are obtained as: 

              [𝐸𝐶𝑤𝜙′′′ − 𝐺𝐽𝜙′−𝑀𝑥(𝑥)]0
𝐿
𝛿𝜙(𝑥)|

0

𝐿
= 0                                                                 (13) 

  [𝐸𝐶𝑤𝜙′′ − 𝑀𝑤(𝑥)]0
𝐿
𝛿𝜙′(𝑥)|

0

𝐿
= 0                                 (14) 

where 𝒟 is the differential operator, i.e., 𝒟2 ≡ 𝑑2 𝑑𝑧2⁄ , and 𝒟4 = 𝑑4 𝑑𝑧4⁄ .  
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Exact Homogeneous Solution for Torsional Equation  

The homogeneous solution of the field equation (12) is obtained by setting the loading term in the field equation 

to zero, i.e., 𝑚𝑥(𝑥) = 0. The solution of the torsional rotation space function 𝜙(𝑥) is then assumed to take the 

following form: 

                   𝜙(𝑥) = 𝐴𝑖  𝑒
𝑚𝑖𝑥 , for 𝑖 = 1,2,3,4                                                                                              (15) 

From of space torsional function postulated in equation (15), by substituting into the torsional equation (12), one 

obtains the quartic algebraic equation as:  

                                     𝐸𝐶𝑤𝑚𝑖
4 + (𝜌Ω2𝐶𝑤 − 𝐺𝐽)𝑚𝑖

2 − 𝜌𝐴Ω2𝐼𝑜
2 = 0                                                                 (16) 

The resulting equation (16) is solved for constants yielding the roots as:  

𝑚1,2 = ± [
−(𝜌Ω2𝐶𝑤−𝐺𝐽)+√(𝜌Ω

2𝐶𝑤−𝐺𝐽)
2+4𝐸𝐶𝑤𝜌𝐴Ω

2𝐼𝑜
2

2𝐸𝐶𝑤
]

1 2⁄

= ±𝛽 , and  

 𝑚3,4 = ±𝑖 [
(𝜌Ω2𝐶𝑤−𝐺𝐽)+√(𝜌Ω

2𝐶𝑤−𝐺𝐽)
2+4𝐸𝐶𝑤𝜌𝐴Ω

2𝐼𝑜
2

2𝐸𝐶𝑤
]

1 2⁄

= ±𝑖𝛼 

It is noted that, the four roots (𝑚𝑖   for  𝑖 = 1,2,3,4) are distinct and the homogeneous solution for torsional rotation 

function 𝜙(𝑥) is obtained as:  

                                 𝜙(𝑥) = 𝑐1 cosh(𝛽𝑥) + 𝑐2 sinh(𝛽𝑥) + 𝑐3 cos(𝛼𝑥) + 𝑐4sin (𝛼𝑥)                                      (17) 

where 𝑐𝑖 for 𝑖 = 1,2,3,4 are unknown integration constants which can be obtained from the problem boundary 

conditions. The exact homogeneous solution related to steady state torsional response presented in equation (17) 

can be written in matrix form as: 

                                         𝜙(𝑥) = 〈𝜒(𝑥)〉1×4{𝐶}4×1                                                                                            (18) 

where 〈𝜒(𝑥)〉1×4 = 〈cosh(𝛽𝑥) sinh(𝛽𝑥) cos(𝛼𝑥) sin (𝛼𝑥)〉1×4, and  〈𝐶〉1×4 = 〈c1 c2 c3 c4〉1×4. 

                                                      

Finite Element Formulation  

The developed finite beam element is designed to analyze the steady state torsional response of open thin-walled 

doubly symmetric beams subjected to various harmonic torsional and warping moments. The two-noded finite 

beam element, with four degrees of freedom per element (Fig. 2), is formulated using exact shape functions that 

precisely satisfy the homogeneous solution of the torsional field equation. These functions are utilized to derive 

the exact stiffness and mass matrices, as well as the load potential energy vector for the beam element. 

 
Figure 2: Two-noded thin-walled beam element for torsional-warping response. 

 

Formulating of Exact Shape Functions  

To relate the torsional displacement 𝜙(𝑥) to nodal torsional displacements, the vector of unknown integration 

constants 〈𝐶〉1×4 = 〈c1 c2 c3 c4〉1×4 is represented in terms of torsional rotation and rate of torsional 

displacement 〈𝛹𝑁〉1×4 = 〈𝛩1 𝛷1 𝛩2 𝛷2〉1×4 by applying the following conditions 𝛩1 = 𝜙(0), 𝛷1 = 𝜙′(0),  

𝛩2 = 𝜙(𝑙𝑒), and 𝛷2 = 𝜙′(𝑙𝑒),. This leads to: 

                      {𝛹𝑒}4×1 = {

𝛩1
𝛷1
𝛩2
𝛷2

}

4×1

=

{
 
 

 
 𝜙

(0)

𝜙′(0)

𝜙(𝑙𝑒)

𝜙′(𝑙𝑒)}
 
 

 
 

4×1

=

[
 
 
 
〈𝜒(0)〉1×4
〈𝜒′(0)〉1×4
〈𝜒(𝑙𝑒)〉1×4
〈𝜒′(𝑙𝑒)〉1×4]

 
 
 

4×4

{𝐶}4×1 = [ℱ]4×4{𝐶}4×1                     (19) 

Node i Node j

𝑙𝑒

𝛩𝑖

𝛷𝑖

𝛩 

𝛷 

𝑥

𝑧
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in which [ℱ]4×4 = [

1 0 1                    0
0 𝛽 0                    𝛼

cosh(𝛽𝑙𝑒)

𝛽sinh(𝛽𝑙𝑒)

sinh(𝛽𝑙𝑒)

𝛽cosh(𝛽𝑙𝑒)
cos(𝛼𝑙𝑒)

−αsin(𝛼𝑙𝑒)

sin(𝛼𝑙𝑒)

𝛼 cos(𝛼𝑙𝑒)

]

4×4

  

From equation (19), by substituting into equation (18), one obtains: 

                                   𝜙(𝑥) = 〈𝜒(𝑥)〉1×4[ℱ]4×4
−1 {𝛹𝑒}4×1 = 〈𝐻(𝑥)〉1×4{𝛹𝑒}4×1                                                  (20) 

where 〈𝐻(𝑥)〉1×4 = 〈𝜒(𝑥)〉1×4[ℱ]4×4
−1  is the exact shape function matrix for the torsional-warping response of 

open thin-walled doubly symmetric beams, it is observed that the shape functions presented in equation (20) 

precisely satisfy the homogeneous solution of the torsional field equation. 

Energy Expressions in Terms of Nodal Torsional Displacements 

The expressions for the variation of kinetic energy, strain energy, and the potential by applied harmonic torsional 

and warping moments, along with the axial static force, are derived in terms of the nodal degrees of freedom. This 

is achieved by substituting equation (20) into equations (4-6), resulting in the following: 

      𝛿𝑇 = −〈𝛿𝛹𝑒〉1×4 (Ω
2 ∫ (𝜌𝐶𝑤 + 𝜌𝐴𝐼𝑜

2) {𝐻(𝑥)}4×1〈𝐻(𝑥)〉1×4𝑑𝑥
𝑙𝑒
0

) {𝛹𝑒}4×1 𝑒
𝑖Ω𝑡𝑑𝑥                        (21) 

          𝛿𝑈 = 〈𝛿𝛹𝑒〉1×4 (∫ [𝐸𝐶𝑤{𝐻′′(𝑥)}4×1 〈𝐻′′(𝑥)〉1×4 + 𝐺𝐽{𝐻′(𝑥)}4×1 〈𝐻′(𝑥)〉1×4]
𝑙𝑒
0

) {𝛹𝑒}4×1 𝑒
𝑖Ω𝑡𝑑𝑥            (22) 

              𝛿𝑉 = 〈𝛿𝛹𝑒〉1×4  (∫ 𝑚𝑥(𝑥){𝐻(𝑥)}4×1
𝑙𝑒
0

𝑑𝑥 + [𝑀𝑥(𝑥){𝐻(𝑥)}4×1 +𝑀𝑤(𝑥){𝐻′(𝑥)}4×1]0
𝑙𝑒
) 𝑒𝑖Ω𝑡            (23)                                                      

From equations (21-23), by substituting into Hamilton’s variational principle (eqn. 3), one obtains:   

                  ([𝐾𝑒]4×4 − Ω
2[𝑀𝑒]4×4){𝛹𝑒}4×1 = {𝐹𝑒}4×1                                                               (24) 

in which, the stiffness matrix for beam element [𝐾𝑒]4×4is given by: 

[𝐾𝑒]4×4 = ∫ [𝐺𝐽{𝐻′(𝑥)}4×1 〈𝐻′(𝑥)〉1×4 + 𝐸𝐶𝑤 {𝐻′′(𝑥)}4×1〈𝐻′′(𝑥)〉1×4]
𝑙𝑒

0

𝑑𝑥 

The mass matrix for beam element [𝑀𝑒]4×4 is given by: 

[𝑀𝑒]4×4 = ∫ (𝜌𝐴𝐼𝑜
2 − 𝜌𝐶𝑤){𝐻(𝑥)}4×1 〈𝐻(𝑥)〉1×4𝑑𝑥

𝑙𝑒

0

 

The element load vector {𝐹𝑒}4×1 is given by: 

{𝐹𝑒}4×1 = ∫ 𝑚𝑥(𝑥){𝐻(𝑥)}4×1

𝑙𝑒

0

𝑑𝑥 + [𝑀𝑥(𝑥){𝐻(𝑥)}4×1 +𝑀𝑤(𝑥){𝐻′(𝑥)}4×1]0
𝑙𝑒

 

The elastic stiffness and mass matrices, along with the load vector for a one-dimensional, two-noded thin-walled 

beam element with two degrees of freedom per node, are computed for torsional vibration analysis using the exact 

shape functions derived in this formulation. 

 

Galerkin Finite Element Formulation  

The trial solution is assumed to take the form: 

    𝜙(𝑥) = ∑ 𝑁𝑖(𝑥) 𝑢𝑖
4
𝑖=1                                                                                           (25)     

where 𝑁𝑖(𝑥) are the shape functions for beam element, and 𝑢1 = 𝜙1,  𝑢2 = 𝜙1
′ ,  𝑢3 = 𝜙2, and  𝑢4 = 𝜙2

′ . 

The weak form is obtained by multiplying the governing equation (13) by the weight function 𝑁𝑖(𝑥) as: 

                   ∫ 𝑁𝑖(𝑥)[𝐸𝐶𝑤𝒟
4 𝜙(𝑥) − 𝜌𝐴Ω2𝐼𝑜

2 𝜙(𝑥) + (𝜌Ω2𝐶𝑤 − 𝐺𝐽)𝒟
2 𝜙(𝑥) − 𝑚𝑥(𝑥)]𝑑𝑥 = 0

𝑙𝑒
0

 

By integrating the previous equation over the beam element length 𝑙𝑒  to reduce the order of derivatives, and then 

applying the related boundary conditions presented in (14) and (15), leads to the following system: 

                                          ([𝐾𝑒]4×4 − Ω
2[𝑀𝑒]4×4)

{𝑢𝑒}4×1 = {𝐹𝑒}4×1                                                             (26) 

where [𝐾𝑒]4×4 is the stiffness matrix for beam element, [𝑀𝑒]4×4 is the element mass matrix, {𝐹𝑒}4×1is the vector 

od applied forces, and  {𝑢𝑒}4×1 is the vector contains the nodal displacements and rotations obtained from Galerkin 

finite element formulation. 

In which, the element stiffness matrix [𝐾𝑒]4×4 is obtained by: 

[𝐾𝑒]4×4 =∑∫ [𝐸𝐶𝑤
𝑑2𝑁𝑖(𝑥)

𝑑𝑥2
𝑑2𝑁 (𝑥)

𝑑𝑥2
+ 𝐺𝐽

𝑑𝑁𝑖(𝑥)

𝑑𝑥

𝑑𝑁 (𝑥)

𝑑𝑥
]

𝑙𝑒

0

4

 =1

𝑑𝑥 
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The element mass matrix [𝑀𝑒]4×4 is given as: 

[𝑀𝑒]4×4 =∑∫ [𝜌𝐴𝐼𝑜
2𝑁𝑖(𝑥)𝑁 (𝑥) + 𝜌𝐶𝑤

𝑑𝑁𝑖(𝑥)

𝑑𝑥

𝑑𝑁 (𝑥)

𝑑𝑥
]

𝑙𝑒

0

𝑑𝑥

4

 =1

 

while the element force vector {𝐹𝑒}4×1is obtained as: 

{𝐹𝑒}4×1 = ∫  𝑚𝑥(𝑥)𝑁𝑖(𝑥)𝑑𝑥
𝑙𝑒

0

− [𝑀𝑥(𝑥)𝑁𝑖(𝑥)]0
𝑙𝑒
+ [𝑀𝑤(𝑥)

𝑑𝑁𝑖(𝑥)

𝑑𝑥
]
0

𝑙𝑒

 

For C 1 problem, the approximate shape functions 𝑁1(𝑥), 𝑁2(𝑥), 𝑁3(𝑥) and 𝑁4(𝑥) in element local coordinates 

are given as:     

              𝑁1(𝑥) =
1

𝑙𝑒
3 (2𝑥

3 − 3𝑥2𝑙𝑒 + 𝑙𝑒
3)  ,                     𝑁2(𝑥) =

1

𝑙𝑒
3 (𝑥

3𝑙𝑒 − 2𝑥
2𝑙𝑒
2 + 𝑥𝑙𝑒

3)  

              𝑁3(𝑥) =
1

𝑙𝑒
3 (−2𝑥

3 + 3𝑥2𝑙𝑒) , and                   𝑁4(𝑥) =
1

𝑙𝑒
3 (𝑥

3𝑙𝑒 − 𝑥
2𝑙𝑒
2)                                              (27) 

These shape functions ensure both displacement and rotation continuity at the element nodes. Substituting 

equation (27) into stiffness, mass matrices and force vector to obtain:   

[𝐾𝑒] = 𝐸𝐶𝑤

[
 
 
 
 
 
 
12

𝑙𝑒
3

6

𝑙𝑒
2

−12

𝑙𝑒
3

6

𝑙𝑒
2

6

𝑙𝑒
2

4

𝑙𝑒

−6

𝑙𝑒
2

2

𝑙𝑒
−12

𝑙𝑒
3

6

𝑙𝑒
2

−6

𝑙𝑒
2

2

𝑙𝑒

12

𝑙𝑒
3

−6

𝑙𝑒
2

−6

𝑙𝑒
2

4

𝑙𝑒 ]
 
 
 
 
 
 

+ 𝐺𝐽

[
 
 
 
 
 
 
−6

5𝑙𝑒

−1

10

6

5𝑙𝑒

−1

10

−1

10

−2𝑙𝑒

15

1

10

𝑙𝑒

30
6

5𝑙𝑒
−1

10

1

10
𝑙𝑒

30

−6

5𝑙𝑒
1

10

1

10
−2𝑙𝑒

15 ]
 
 
 
 
 
 

 , 

[𝑀𝑒] = (𝜌𝐴Ω
2𝐼𝑜
2)

[
 
 
 
 
 
 
−13𝑙𝑒

35

−11𝑙𝑒
2

210

−9𝑙𝑒

70

13𝑙𝑒
2

420

−11𝑙𝑒
2

210

−𝑙𝑒
3

105

−13𝑙𝑒
2

420

𝑙𝑒
3

140

−9𝑙𝑒

70

13𝑙𝑒
2

420

−13𝑙𝑒
2

420

𝑙𝑒
3

140

−13𝑙𝑒

35

11𝑙𝑒
2

210

11𝑙𝑒
2

210

−𝑙𝑒
3

105 ]
 
 
 
 
 
 

+ (𝜌Ω2𝐶𝑤)

[
 
 
 
 
 
 
−6

5𝑙𝑒

−1

10

6

5𝑙𝑒

−1

10

−1

10

−2𝑙𝑒

15

1

10

𝑙𝑒

30
6

5𝑙𝑒
−1

10

1

10
𝑙𝑒

30

−6

5𝑙𝑒
1

10

1

10
−2𝑙𝑒

15 ]
 
 
 
 
 
 

 ,  and 

the vector of applied forces is given as:   {𝐹𝑒} =

{
  
 

  
 

𝑚(𝑥).𝑙𝑒

2
+𝑀𝑥(0)

𝑚(𝑥).𝑙𝑒
2

12
−𝑀𝑤(0)

𝑚(𝑥).𝑙𝑒

2
+𝑀𝑥(𝑙𝑒)

−𝑚(𝑥).𝑙𝑒
2

12
+𝑀𝑤(𝑙𝑒)}

  
 

  
 

. 

Numerical Examples and Validation 

This section presents two examples for thin-walled beams with doubly symmetric open cross-sections, subjected 

to various harmonic torsional and warping moments under different boundary conditions, to demonstrate the 

validity, accuracy, and applicability of the developed exact finite two-noded thin-walled beam element. The beam 

element is utilized to: (a) compute the steady-state torsional dynamic response of the thin-walled beam under 

specified torsional excitations, (b) capture the quasi-static torsional response of the thin-walled beam under 

torsional excitation having very small exciting frequency, and (c) predict the natural torsional frequencies of the 

thin-walled beam. The formulation is based on shape functions that exactly satisfy the exact homogeneous solution 

of the torsional field equation. This approach eliminates mesh discretization errors commonly encountered in 

conventional interpolation schemes used in finite element solutions, allowing convergence with a minimal number 

of degrees of freedom. The torsional results obtained from the present finite beam element (with two degrees of 

freedom per node) are compared to exact solutions and finite element results available in the literature. 

 

Example (1): Static and Dynamic Responses - Validation  

In this example, a cantilever thin-walled I-beam with span of 2.40m subjected to three types of harmonic loading: 

(i) uniformly distributed twisting moment 𝑚𝑥(𝑥, 𝑡) = 2.40𝑒
𝑖Ω𝑡𝑘𝑁.𝑚/𝑚 along the beam axis, (ii) concentrated 

twisting moment 𝑀𝑥(𝐿, 𝑡) = 1.80𝑒
𝑖Ω𝑡𝑘𝑁.𝑚, and (ii) concentrated warping moment 𝑀𝑤(𝐿, 𝑡) = 2.0𝑒

𝑖Ω𝑡𝑘𝑁.𝑚 

applied at the beam free end (𝑥 = 𝐿), as illustrated in Figure (3). The geometric and material properties of the 

beam cross-section are provided in Table (1). To verify the accuracy of the exact closed-form solution and the 
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finite beam element model developed in this study, the following tasks are required: (a) performing a quasi-static 

torsional analysis using a very low excitation frequency, i.e., Ω ≈ 0.01𝜔𝑡1, and (b) investigating the steady-state 

dynamic torsional response at exciting frequency of  Ω = 1.64𝜔𝑡1, where 𝜔𝑡1is the first natural torsional 

frequency of the cantilever beam obtained as 𝑓1𝑡 = 35.26𝐻𝑧. 

 

Table 1: Geometric and properties of doubly symmetric thin-walled I-beam. 

Parameter Value Parameter Value 

𝐸 200.0 × 109𝑁 𝑚2⁄  𝐴 7420 × 10−6𝑚2 

𝐺 77.0 × 109𝑁 𝑚2⁄  𝜌 8000 𝑘𝑔 𝑚3⁄  

𝐼𝑦𝑦 87.10 × 10−6𝑚4 𝐼𝑧𝑧 18.82 × 10−6𝑚4 

𝐽 373.7 × 10−9𝑚4 𝐶𝑤 268.0 × 10−9𝑚6 

  

Figure 3: A cantilever thin-walled I-beam under various twisting and warping moments. 

 

The numerical results obtained from the exact closed-form solution and finite element formulation developed in 

this study based on Vlasov beam theory are compared with those obtained from the exact solutions presented in 

the literature and Abaqus finite beam element. In the Abaqus finite element model, the thin-walled beam with two 

nodes is represented using 80 B31OS elements (i.e., 567 dof) along the beam axis to achieve high accuracy. In 

contrast, the present finite element model uses a single two-noded beam element (i.e., 4 dof) to match the exact 

solution. Although the present finite beam element results are obtained using a single beam element, five beam 

elements with 12 degrees of freedom are used for a more detailed comparison with the Abaqus solution, in order 

to demonstrate better match with the nodal results. 

 

Quasi-Static Analysis for Torsional Response  

To achieve the quasi-static torsional response of a cantilever thin-walled beam under various harmonic twisting 

and warping moments, the excitation frequency Ω is set significantly lower than the first natural torsional 

frequency, specifically Ω ≈ 0.01𝜔1 = 2.215𝑟𝑎𝑑/𝑠𝑒𝑐. Table (2) presents a comparative analysis of the quasi-

static results for torsional rotation angles 𝜙(L) and warping functions 𝜙′(𝐿), demonstrating the accuracy of the 

finite element solution (FES) in modeling the torsional behavior of thin-walled cantilever I-beams. The results 

exhibit a high degree of agreement across models, with the static solutions aligning closely with those reported 

by Hjaji et al. [12] and Seaburg et al. [2]. Notably, the results from the present FE solution and those from Hjaji 

et al. [12] and Abaqus mode (AFS) are nearly identical, indicating the reliability of these computational 

 

Table 2: Static results for torsional rotation angle 𝜙(𝐿) and warping function 𝜙′(𝐿) for thin-walled  

cantilever I-beam under various twisting and warping moments. 

Type of load 
Function 

(× 𝟏𝟎−𝟑) 
Hjaji et al. 

[12] 

Seaburg 

et al. [2] 

Abaqus 

FES 

Present 

FES 

Distributed twisting 

moment 𝒎𝒙(𝒙, 𝒕) 
𝜙(𝐿) -86.668 -86.129 -86.994 -86.129 

𝜙′(𝐿) -40.420 -40.275 -40.566 -40.276 

End twisting moment 

𝑴𝒙(𝑳, 𝒕) 
𝜙(𝐿) -69.911 -69.679 -69.935 -69.679 

𝜙′(𝐿) -41.536 -41.619 -41.567 -41.619 

End warping moment 

𝑴𝒘(𝑳, 𝒕) 
𝜙(𝐿) -46.151 - -46.185 -46.243 

𝜙′(𝐿) -48.080 - -48.112 -47.989 

Various moments  𝒎𝒙(𝒙, 𝒕), 
𝑴𝒙(𝑳, 𝒕), and 𝑴𝒘(𝑳, 𝒕) 

𝜙(𝐿) -202.73 - -203.10 -202.05 

𝜙′(𝐿) -129.83 - -130.20 -129.88 

 

approaches. Minor deviations between the present FE solution (FES) and other models likely arise from shear 

deformation effects, which are considered in Hjaji et al. [12] and Abaqus (AFS) but not in Seaburg et al. [2] and 

FES. Excellent static results for the nodal torsional angle 𝜃𝑛 and warping deformation function 𝛷𝑛 (for 𝑛 =
1,2,3,4,5) are achieved using the proposed finite element formulation with a single beam element and 4 degrees 
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of freedom. However, for a broader comparison with the Abaqus finite element solution, which employs 80 

B31OS elements and 567 degrees of freedom, five finite elements are utilized for the sake of comparison. Figure 

(4) illustrates the nodal torsional rotation 𝜃𝑛 and warping deformation function 𝛷𝑛 for the cantilever I-beam 

subjected to various harmonic twisting and warping moments. The results, including the exact solutions by Hjaji 

et al. [12], Seaburg et al. [2], Abaqus finite element solutions, and the proposed finite element solution, are 

overlaid for comparison.  It is evident that the proposed finite element solution exhibits excellent agreement with  

 

  

  

  

  

Figure 4: Static torsional response for cantilever thin-walled beam under various torsional and warping moments. 

 

the other solutions. This alignment naturally arises because the present finite element solution employs shape 

functions that precisely satisfy the homogeneous form of the torsional equation are used. As a result, this approach 

effectively eliminates the discretization errors commonly introduced in traditional finite element formulations. 

Overall, the present FE solution effectively captures the static torsional behavior of thin-walled members. 
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Dynamic response analysis 

The dynamic response analysis focuses on evaluating the nodal torsional rotation angle and warping deformation 

function at the free end of a cantilever I-beam subjected to various harmonic torsional and warping moment loads, 

with exciting frequency Ω = 2.232𝜔𝑡1 = 494.4 𝑟𝑎𝑑/𝑠𝑒𝑐, is summarized in Table (3). The steady-state dynamic 

results obtained from the present finite element solution (FES), using a single beam element with four degrees of 

freedom per element, are compared with the exact solution provided by Hjaji et al. [12], and Abaqus finite element 

model (AFE) employing 80 B31OS elements with 567 degrees of freedom for enhanced accuracy. It is noted that, 

the dynamic response results highlight the close agreement between these three solutions, exhibiting the reliability 

of the present finite element solution (FES). Notably, the present FE solution demonstrates consistent 

performance, with deviations observed to be within acceptable limits when compared to established references.  

 

Table 3: Dynamic results of torsional rotation angle 𝜙(𝐿) and warping function 𝜙′(𝐿) for thin-walled  

cantilever I-beam under various twisting and warping moments. 

Type of load 
Function 

(× 𝟏𝟎−𝟑) 
Hjaji et al. 

[12] 

Abaqus 

AFE 

Present 

FES 

Distributed twisting 

moment 𝒎𝒙(𝒙, 𝒕) 

𝜙(𝐿) 24.688 24.652 24.675 

𝜙′(𝐿) 15.636 15.364 15.508 

End twisting moment 𝑴𝒙(𝑳, 𝒕) 
𝜙(𝐿) -11.266 -11.330 -11.621 

𝜙′(𝐿) 2.8879 2.8403 2.4464 

End warping moment 

𝑴𝒘(𝑳, 𝒕) 

𝜙(𝐿) 3.2087 3.1559 2.9275 

𝜙′(𝐿) 29.904 29.808 29.169 

Various moments 𝒎𝒙(𝒙, 𝒕), 
𝑴𝒙(𝑳, 𝒕), and 𝑴𝒘(𝑳, 𝒕) 

𝜙(𝐿) 16.636 16.478 15.982 

𝜙′(𝐿) 48.430 48.012 47.123 

 

To give comprehensive comparison, the dynamic response results of the nodal torsional rotation 𝜃𝑛 and warping 

deformation function 𝛷𝑛 (for 𝑛 = 1,2,3,4,5) for the given cantilever beam are plotted against the beam axis 𝑥 as 

illustrated in Figures (5). The nodal degrees of freedom results based on three solutions: the finite element solution 

(FES) developed in this study using five beam elements with 12 dof, exact solution (ES) in Hjaji et al. [12], and 

Abaqus finite element (AFE) using 80 B31OS beam elements, are plotted on the same diagrams for the 

comparison. It is noted that, the present finite element provides an excellent agreement with those based on Abaqus 

solution at a fraction of the computational and modelling cost. This outcome is expected, as the present beam 

element is constructed using shape functions that precisely satisfy the exact solution of the torsional field equation, 

effectively eliminating discretization errors encountered under other interpolation schemes. This emphasizes the 

accuracy of the proposed solutions in capturing the steady state dynamic torsional response of thin-walled beams 

under complex dynamic loading scenarios. 
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Figure 5: Dynamic torsional response for cantilever thin-walled I-beam under various  

torsional and warping moments. 

 

Example (2): Torsional natural frequencies  

To attain the accuracy of the present finite element formulation to predict the natural torsional frequencies, a 

3000mm thin-walled beam subjected to distributed harmonic twisting moment 𝑚𝑥(𝑥, 𝑡) = 1.60𝑒
𝑖Ω𝑡𝑘𝑁𝑚/𝑚 

applied along the beam coordinate x is shown in Figure (6). The beam with clamped-free (CF), simply-supported 

(SS) or fork-fork, clamped-clamped (CC), and clamped-pinned (CS) or clamped-fork boundary conditions are 

considered in this example. For the case of simply-supported boundary conditions, the fork-type end supports are 

used, in which the beam is unrestrained along its length while the fork supports prevent the cross-section from 

torsional rotation and allow free warping deformation. The material and geometrical properties of the steel beam 

are given in Table (4). For verification purposes, it is required to (a) conduct the steady state dynamic analysis for 

predicting the first three natural torsional frequencies, (b) compute the quasi-static response analysis by adopting 

an exciting frequency Ω ≈ 0.01𝜔𝑡1, and (c) establish the steady state dynamic response for exciting frequency 

Ω = 150𝑟𝑎𝑑/𝑠𝑒𝑐. 
 

Table 4: Geometric and material properties of thin-walled beam. 

Parameter Value Parameter Value 

𝐸 200𝐺𝑃𝑎 𝐺 78𝐺𝑃𝑎 

𝐴 7200𝑚𝑚2 𝜌 7800𝑘𝑔/𝑚3 

𝐼𝑦𝑦 41.24 × 106𝑚𝑚4 𝐽 24.0 × 103𝑚𝑚4 

𝐼𝑧𝑧 8.50 × 106𝑚𝑚4 𝐶𝑤 87.51 × 109𝑚𝑚6 
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Figure 6: A thin-walled beam under distributed harmonic twisting moment. 

The numerical results obtained from the present finite element formulation are compared with corresponding 

results from other exact solutions available in the literature, as well as with Galerkin and Abaqus finite beam 

element solutions. In the Abaqus model, the thin-walled beam is discretized using 100 B31OS elements, resulting 

in a total of 707dof to achieve the desired level of accuracy. In the Galerkin-based finite element approach, the 

beam is divided into fifty elements, each with four DOF, yielding a total of 102 dof. In contrast, the present finite 

element formulation uses a single beam element (i.e., 4 dof) to approach the exact results. Even though, the present 

finite element solution captured the exact nodal results by using one beam element for clamped-free beam and 

two elements for other beam boundary conditions, this example utilizes six beam elements with14 dof to exhibit 

clear observation with Abaqus finite solution based on 100 beam elements (707 dof) and Galerkin finite element 

model based on 50 beam elements. 

 

Natural Torsional Frequencies 

Under the distributed twisting moment 𝑚𝑥(𝑥, 𝑡) = 1.60𝑒
𝑖Ω𝑡𝑘𝑁𝑚/𝑚, the natural frequencies associated with 

torsional-warping response are identified through steady-state torsional response analysis. In order to extract the 

first three natural torsional frequencies for the given beam under clamped-free (CF), simply-supported (SS) or 

fork-fork, clamped-clamped (CC) and clamped-pinned (CS) or clamped-fork boundary conditions, the exciting 

frequencies 𝑓 (in Hz) are varied from near zero to 600Hz, 1800Hz, 2000Hz and 800Hz, respectively. Figures in 

(4) illustrate the torsional rotation angle 𝜙(𝐿/2) at beam midspan node (𝑖. 𝑒. , 𝑥 = 𝐿/2) as functions of the exciting 

frequency 𝑓. The natural torsional frequencies are determined from the peaks in the torsional rotation-frequency 

relationship, as these peaks signify resonance. Similarly, peaks observed in the diagrams (Figure 7) serve as 

indicators of the natural torsional frequencies for the beam.  

 

  

  

Figure 7: The first four natural torsional frequencies for thin-walled beam under torsional loading with various 

boundary conditions. 
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Table (5) is summarized the first three natural torsional frequencies, identified from these resonance peaks. It 

compares the first three natural torsional frequencies obtained from three different solutions: the present finite 

element and Galerkin finite element solutions which dis-accounting for shear deformation, while Abaqus finite 

beam model which considers shear deformation due to bending.  The results in Table (5) show that the natural 

torsional frequencies predicted by the Abaqus finite element model (AFE) and Galerkin finite element (GFE) 

differ slightly from those obtained using the present finite element (PFE) solution. It is noted that, the frequency 

results obtained using Galerkin finite element are very close to the corresponding results computed using the 

present finite element, while Abaqus beam element gives values less close to the present solution. This 

discrepancy arises naturally because Vlasov beam represents the stiffest beam model (as they neglect shear 

deformation effects), whereas the Abaqus finite beam analysis provides the most flexible representation due to its 

consideration of numerous degrees of freedom. The discrepancies arise from the inclusion of shear deformation 

effects in the Abaqus solution, which are not accounted for in the Vlasov beam theory. Moreover, the variation in 

results arises because the present finite element utilizes an exact shape function that exactly satisfies the solution 

of the torsional field equation, whereas the finite element solutions from Abaqus and the Galerkin approach rely 

on approximate shape functions. 

 

Table 5: The first three natural torsional frequencies for thin-walled beam with various boundary conditions. 

Freq

. 

No. 

Clamped-free Simply-supported Clamped-clamped Clamped-pinned 

PFE  AFE GFE  PFE  AFE GFE  PFE AFE GFE PFE  AFE GFE 

1 26.58 27.04 26.57 52.05 52.75 52.05 93.28 92.01 93.29 69.96 70.61 69.96 

2 105.4 104.9 105.2 348.2 341.2 348.2 464.2 444.8 464.2 201.3 198.5 201.7 

3 252.2 247.8 251.4 902.3 880.7 922.7 1036 1018 1109 399.4 392.2 403.8 

 

Static Response Analysis 

The quasi-static analyzes of the torsional response of thin-walled beam subjected to distributed harmonic twisting 

moment 𝑚𝑥(𝑥, 𝑡) = 1.60𝑒
𝑖Ω𝑡𝑘𝑁𝑚/𝑚 are conducted by using very low exciting frequency (Ω ≈ 0.01𝜔1) related 

to the first natural torsional frequency of the given beams. Figures in (8) overlay the nodal torsional rotation angle 

𝜙𝑛 and warping deformation function 𝜙𝑛
′  of static torsional responses obtained from the present finite element 

formulation with the exact solution of Seaburg et al. [2], Abaqus finite element solution using 100 B31OS beam 

elements (707 dof), and Galerkin finite element solution using 50 beam elements (102 dof). Although the proposed 

finite element formulation with just two beam elements (6 dof) achieved excellent results, but six beam elements 

with 14 dof are used for comparison purposes. The results exhibit excellent agreement among all four solutions. 

It is clearly noted that, the present finite element results using six beam elements (14 dof) closely match those of 

the Abaqus finite model, which uses 100 beam elements (707 dof) and Galerkin finite element based on 50 

elements (102 dof). A gain, these results demonstrate the efficiency and accuracy of the proposed finite element 

in capturing the static response of the given beam under various boundary conditions. 
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Figure 8: Static torsional responses for thin-walled beam under distributed twisting moment and various 

boundary conditions. 

 

Steady State Dynamic Response 

Figure (9) illustrates the steady-state torsional rotation and warping deformation responses of thin-walled beam 

subjected to distributed harmonic twisting moment 𝑚𝑥(𝑥, 𝑡) = 1.60𝑒
𝑖Ω𝑡𝑘𝑁𝑚/𝑚 at exciting frequency Ω =

150𝑟𝑎𝑑/𝑠𝑒𝑐. The nodal results for torsional rotation angle 𝜃𝑛 and warping deformation 𝛷𝑛 (𝑛 = 1,2,3, … , 7) 
derived from the proposed formulations are compared with those obtained using Abaqus finite beam model. The 

comparison shows that the present closed-from solution and finite element using six beam elements (14 dof) 

achieves excellent agreement with the Abaqus beam model, which utilizes 100 B31OS elements (707 dof) and 

Galerkin finite element solution based on 50 beam elements. 
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Figure 9: Dynamic torsional responses for thin-walled beams under distributed twisting moment and  

various boundary conditions. 

 

Example (3) – Validation of Finite beam element Formulation 

A thin-walled I-beam of length 6000mm is subjected to various torsional and warping moments; uniformly 

distributed torsional loading 𝑚𝑥(𝑥, 𝑡) = 1.20𝑒
𝑖Ω𝑡𝑘𝑁𝑚/𝑚 and concentrated twisting moments 𝑀𝑥1(2𝑚, 𝑡) =

1.80𝑒𝑖Ω𝑡𝑘𝑁𝑚 and 𝑀𝑥2(5𝑚, 𝑡) = 1.60𝑒
𝑖Ω𝑡𝑘𝑁𝑚 end warping moment 𝑀𝑤(6𝑚, 𝑡) = 1.50𝑒

𝑖Ω𝑡𝑘𝑁𝑚2/𝑚 applied 

as shown in Figure (10). The beam has fixed support at left end and unrestrained along its span except at the fork 

support which prevents the beam cross section from torsional rotation and moving laterally but allows for the 

warping deformation.  

The geometric properties of the beam section are listed in Table (6). To assess the accuracy and efficiency of the 

present finite beam element formulation, the quasi-static response is evaluated under a very low excitation 

frequency Ω ≈ 0.01𝑓𝑡1 = 0.3248𝐻𝑧 and steady state dynamic response with exciting frequencies Ω = 120𝐻𝑧, 

where the first natural torsional frequency of the given beam is 𝑓1𝑡 = 32.48𝐻𝑧.   

 

Table 6: Geometric and properties of thin-walled I-section beam. 

Parameter Value Parameter Value 

𝐸 200.0 × 109𝑁/𝑚2 𝐺 78.0 × 109𝑁/𝑚2 

𝐴 7389𝑚𝑚2 𝜌 8000𝑘𝑔/𝑚3 

𝐼𝑦𝑦 86.98 × 106𝑚𝑚2 𝐽 373.7 × 103𝑚𝑚4 

𝐼𝑦𝑦 18.82 × 106𝑚𝑚2 𝐶𝑤 267.7 × 109𝑚𝑚6 
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Figure 10: A thin-walled I-beam under various twisting and warping moments. 

 

For validation purposes, the nodal static and dynamic results obtained from the finite element solution (FES) 

developed in this study are compared with those from the well-established Abaqus model using the B31OS beam 

element. In the Abaqus simulation, 180 B31OS beam elements are employed, resulting in a total of 1,267 degrees 

of freedom (DOF) to minimize mesh discretization errors and ensure high accuracy. In contrast, the present finite 

beam element formulation requires only six beam elements along the beam span, involving just 14 DOF in total. 

 

Static Response Analysis 

The quasi-static torsional warping response of the given thin-walled beam is evaluated using two distinct finite 

element approaches: the present formulation, which utilizes only 14 degrees of freedom (DOF), and the Abaqus 

finite beam element model, which employs 1,267 DOF. The static results for the nodal torsional rotation angle θₙ 

and the warping deformation function Φₙ (for n = 1, 2, 3, ..., 7) are presented in Figure 11. These results, derived 

from both the present formulation and the Abaqus B31OS beam model, are superimposed on the same plots for 

direct comparison. As shown in Figure 8, there is excellent agreement between the results of the present model 

using just six beam elements (14 DOF) and those of the Abaqus model using 180 elements (1,267 DOF). This 

clearly demonstrates that the present finite element formulation can achieve high accuracy with a significantly 

reduced number of degrees of freedom. Additionally, this indicates that the present finite element solution 

effectively determines the eigenfrequencies of the given beams. 

 

  

Figure 11: Static torsional analysis of thin-walled I-beam under various twisting and warping moments . 

 

Dynamic Torsional-Warping Response Analysis  

The dynamic torsional warping response for the given beam subjected to various twisting and warping moments 

under exciting frequency (𝑓 = 120𝐻𝑧) are presented in Figure (12). The nodal torsional rotation θn  and warping 

deformation Φn  (for n=1,2,3,…,7) obtained from the present finite element formulation, which is based on exact 

shape functions, are compared with the results from the Abaqus finite beam model. The comparison reveals that 

the present formulation, utilizing only six beam elements and 14 degrees of freedom, shows excellent agreement 

with the Abaqus model, despite the latter using a significantly higher number of elements (i.e., 180 B31OS 

elements with 1,267 dof). This leads to conclude that, the computational efforts in the present finite element 

solutions are several orders of magnitudes less than that of Abaqus beam model solution. This naturally results 

from the fact that the present finite element formulation is based on the shape functions, which exactly satisfy the 

homogeneous form of the dynamic governing torsional equation, which in turn eliminates discretization errors 

encountered in finite element formulation.   
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Figure 12: Dynamic torsional analysis of thin-walled I-beam under various twisting and warping moments 

having exciting frequency 𝑓 = 120𝐻𝑧 

 

Summary and Conclusion  

Based on the results obtained in this study, the following concluding remarks can be drawn:  

1. The governing field equation for the torsional-warping response and related boundary conditions for open 

thin-walled Vlasov beams under harmonic torsional excitations is derived through Hamilton variational 

principle.  

2. The exact solution for the steady-state torsional response of thin-walled beams, developed in this study, has 

been effectively utilized to construct a set of exact shape functions that precisely satisfy the homogeneous 

form of the governing torsional equation. 

3. The exact shape functions are used to formulate an efficient finite beam element for torsional-warping 

response.  

4. An efficient and accurate finite beam element has been developed for open thin-walled beams with doubly 

symmetric cross-sections, featuring two nodes and four degrees of freedom per element. This element is 

capable of accurately capturing the response under various harmonic torsional and warping moment 

loadings. 

5. The present finite element solution is based on Vlasov beam theory, which neglects shear deformation effects 

but incorporates warping deformation caused by non-uniform torsion. 

6. The beam element eliminates discretization errors associated with other interpolation schemes and delivers 

highly accurate results with a significantly reduced number of degrees of freedom. 

7. The present finite element formulation effectively captures both quasi-static and steady-state torsional 

responses of open thin-walled beams under harmonic torsional moments.  

8. It also successfully predicts the eigenfrequencies and eigenmodes from the steady-state torsional response.  

9. The proposed finite element formulation demonstrates excellent agreement with Galerkin and Abaqus beam 

elements while requiring considerably less computational and modeling effort. 
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