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Abstract:

Job shop scheduling with alternative routes (JSS-AR) presents a critical optimization challenge in modern
manufacturing, where jobs can follow multiple paths through machines to enhance flexibility. This study
addresses the NP-hard problem of minimizing makespan in JSS-AR by evaluating genetic algorithms (GA),
simulated annealing (SA), ant colony optimization (ACO), and a novel hybrid GA-ACO. Computational
experiments on benchmark instances demonstrate that the hybrid GA-ACO achieves the lowest makespan (4.1%
deviation from theoretical bounds) by synergizing ACQO’s exploratory routing decisions with GA’s refinement.
SA offers rapid solutions for time-sensitive scenarios, while ACO excels in large-scale problems. The findings
provide actionable guidelines for improving production efficiency and resource utilization in dynamic
manufacturing environments.

Keywords: Job shop scheduling, alternative routes, minimizing makespan, genetic algorithms, simulated
annealing, ant colony optimization.
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Introduction

Job shop scheduling (JSS) is pivotal in manufacturing systems, directly influencing production efficiency,
resource utilization, and delivery performance. Traditional JSS focuses on sequencing jobs with fixed machine
routes, but modern Industry 4.0 demands adaptive systems capable of handling machine breakdowns, fluctuating
demand, and dynamic workflows. This evolution has spurred interest in job shop scheduling with alternative
routes (JSS-AR), where each job can traverse multiple predefined paths through machines. By leveraging routing
flexibility, manufacturers can mitigate bottlenecks, balance workloads, and reduce makespan—the total time to
complete all jobs.

However, JSS-AR is an NP-hard combinatorial problem, rendering exact methods like integer programming
impractical for large instances. Metaheuristics, such as Genetic algorithm (GA), Simulated annealing (SA), and
Ant colony optimization (ACO), offer promising solutions by balancing exploration and exploitation in vast
search spaces. Despite progress, gaps persist in systematically comparing these algorithms on standardized
benchmarks and guiding practitioners in algorithm selection.

This study addresses these gaps by:

1. Evaluating GA, SA, ACO, and a hybrid GA-ACO on JSS-AR benchmarks.
2. Quantifying the impact of routing flexibility on scheduling performance.
3. Providing guidelines for algorithm selection based on problem scale and urgency.

The results demonstrate that hybrid metaheuristics significantly outperform standalone methods, offering near-
optimal schedules with practical computational effort.

Literature Review

1. Traditional Job Shop Scheduling
Early JSS research focused on exact methods like branch-and-bound and dispatching rules [1]. However, their
computational inefficiency for large problems prompted a shift to metaheuristics. GA emerged as a robust
approach, leveraging population-based search to handle combinatorial complexity [2]. SA, inspired by
thermodynamic cooling, demonstrated effectiveness in escaping local optima through probabilistic acceptance of
suboptimal solutions [3].

2. Flexible Job Shop Scheduling
The integration of alternative routes into JSS introduced dual challenges: sequencing operations and selecting
machine paths. Routing flexibility has the potential to cut down on idle time, but it also highlights the challenge
of striking a balance between exploration and exploitation [4]. ACO, which mimics ants’ pheromone-driven
foraging, gained traction for its adaptability in dynamic environments [5]. Rossi (2014) applied ACO to JSS-AR,
reporting superior makespan minimization compared to rule-based methods [6].

3. Hybrid and Multi-Objective Approaches
Hybrid algorithms, such as GA combined with local search, have shown promise in flexible JSS. Gao et al. (2008)
demonstrated that hybrid methods outperform standalone algorithms by combining global and local search
strengths [7]. Kacem et al. (2002) introduced Pareto optimization for multi-objective JSS-AR, emphasizing trade-
offs between makespan and machine workload [8]. Recent advancements in industry further underscore the need
for real-time adaptive scheduling [9].

4. Research Gaps
Despite progress, few studies systematically compare metaheuristics on standardized JSS-AR benchmarks or
provide scalability insights. This work bridges these gaps by evaluating GA, SA, ACO, and a hybrid GA-ACO
across problem scales and routing flexibility levels.

Methodology
1. PROBLEM DESCRIPTION

A JSS-AR can be described as a system in which some or all of the job’s operations can be executed on a number
of alternative machines. These machines can be identical or non-identical machines. The sequence of operations
for each job is predefined based on their technological requirements. Operations of the same job cannot be
processed concurrently and cannot be started until their precedence operation is finished. Machines can only
handle one job at the same time and it is assumed that transportation time between machines is negligible and
setup time for every operation is included in its processing time. Taking into account resource availability, the
objective is to develop a scheduling system to optimize the makespan for the problem at hand. To formulate the
problem mathematically we use a similar scheme as in [10]-[13].
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Indices

n: number of jobs.

m: number of machines.

i:jobi (i=12,..,n).

k: machinek (k=1,2,..,m).

Ji: number of operations required to complete job i.

0,;: operation number j of job i (Oil: Oi5, "-'Oij)-

AM;;: the set of machines that can process operation j of job i.

Parameter
Dijk: processing time of operation j of job i on machine k

Decision variables
Sijk: start time of operation j of job i.
Cijx: completion time of operation j of job i on machine k
C;: completion time of the last operation of job i.
1,if operation j of job i is processed on
Xijk machine k
0, otherwise

1,if operation 0;; preceds operation
Yiipqk Opqon machine k
0, otherwise

Objective function

Minimizing the makespan which is the total amount of time required to complete a group of jobs.
Cmax = maX(Clv ey Cn)
Where C; is the completion time of job i.
min Cpqy

Constraints

a) Operation Precedence Constraints
Operation of the job i cannot be started before its preceding operation of the same job is completed.
Sijk 2 Cijjo1k

b) Processing time requirements
Ensure that the difference between the start time and the completion time of job i on machine k is equal to the
processing time of job i on machinek.

Cijk — Sijk = Dijk
c) Resource Constraints
Two different jobs cannot be processed at the same time on the same machine
(Cogk — Cijk — Ppqi ) * Yijpgr = 0
(Cijk — Cpqre — Diji) * (L= Yijpgx) = 0
d) Unit Constraints
Ensures that every job is processed by only one machine in each stage
Z Xijk =1 v l,]
kEAMij

The problem is modeled using disjunctive graphs, with machine eligibility encoded as alternative edges [14],[15].
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2. ALGORITHMIC FRAMEWORK

The following flowchart illustrates the proposed algorithmic framework.
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Figure 1: Flow Chart of the Hybrid GA-ACO Framework.
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3. EXPERIMENTAL DESIGN
Benchmarks: Modified FT06, LA19, and generated instances (10-30 jobs, 5-15 machines) with 2-5 alternative
routes per operation.

Parameters:
e GA: Population size = 100, generations = 500, crossover rate = 0.8, mutation rate = 0.1.
SA: Initial temperature = 1000, cooling rate = 0.95.
ACO: 50 ants, evaporation rate = 0.1.
Metrics: Makespan, runtime, and deviation from lower bounds.
Implementation: Python 3.9 on Intel i7-11800H; 30 runs per instance.

Results and Discussion

1. Algorithm Performance
The hybrid GA-ACO achieved the lowest average makespan (321.4) on small-to-medium instances (10-20 jobs),
with a 4.1% deviation from theoretical bounds. ACO (328.3) and SA (335.8) followed, while GA lagged (342.5).
SA’s computational efficiency (32.1s) suits time-sensitive scenarios, though its 6.9% deviation reflects premature
convergence.

2. Scalability
For 30 jobs, the hybrid method reduced makespan by 18% compared to standalone ACO (721 vs. 735). GA and
SA exhibited degraded performance (789 and 812 makespan, respectively), highlighting limitations in handling
combinatorial complexity.

3. Routing Flexibility Impact
Increasing alternative machines from 2 to 5 reduced makespan by 15.3% (ACO) and 18.1% (hybrid). GA and SA
showed diminishing returns (9% and 11% improvements), indicating struggles with solution space growth.

4. Statistical Significance
Wilcoxon tests confirmed hybrid GA-ACO’s superiority (Z = -4.56, p < 0.01). ACO outperformed SA (Z = -3.82)
and GA (Z = -3.45), while SA and GA showed no runtime difference (p = 0.12).

Conclusion Limitations and Future Work

The hybrid GA-ACO emerges as the most effective method for JSS-AR, balancing exploration and exploitation
to minimize makespan. SA offers speed for urgent decisions, while ACO excels in scalability. These insights
empower manufacturers to optimize flexible job shops, advancing the transition toward smart, adaptive production
systems. However, this study assumes static, deterministic environments. Future work should integrate
reinforcement learning for dynamic scheduling and multi-objective optimization (e.g., energy, tardiness). Real-
world industrial benchmarks would enhance applicability.
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