
 

African Journal of Advanced Pure and 

Applied Sciences (AJAPAS) 
Online ISSN: 2957-644X 

Volume 4, Issue 1, January - March 2025 

Page No: 513-519 

Website: https://aaasjournals.com/index.php/ajapas/index  

ISI 2024: 0.877 SJIFactor 2024: 6.752 1.62: معامل التأثير العربي 
 

513 | African Journal of Advanced Pure and Applied Sciences (AJAPAS)   

Weighted Policy Learning Based Control 

 for Two-Tank Level System 

 
Mostafa D. Awheda 1 *, Saad A. Abobakr 2 

1,2 Department of Control Engineering, College of Electronic Technology, Bani Walid, Libya 

 

 التحكم القائم على التعلم المستند إلى السياسة المرجحة لنظام مستوى الخزانين

 
 2 الباسط أبوبكر سعد عبد، * 1 مصطفى ضي أوحيدة

 بيا قسم هندسة التحكم الآلي، كلية التقنية الإلكترونية، بني وليد، لي   2،1 

 
*Corresponding author: mdawheda@gmail.com   

Received: February 12, 2025 Accepted: March 23, 2025 Published: March 27, 2025 
Abstract:  

Reinforcement learning (RL) is a model‐free framework in which agents learn control policies through trial‐and‐

error interaction with the environment. While classical controllers such as PID, LQR, and MPC guarantee stability 

and interpretability, they tend to rely on accurate models and become suboptimal in nonlinear and uncertain 

system dynamics situations. We address the two‐tank fluid level control benchmark, with its high coupling and 

nonlinear outflows, in this work using the multi‐agent RL formulation by the Weighted Policy Learning (WPL) 

algorithm. The level of the second tank is controlled by WPL's policy‐gradient weighting to ensure smooth 

convergence under non‐stationarity. Simulation results demonstrate rapid setpoint tracking, minimal overshoot, 

and higher disturbance robustness and reflect the effectiveness of, as well as innovativeness in, applying WPL to 

process control issues. 
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 الملخص 

التعزيزي ) البيئة ( هو  RLالتعلم  التفاعل مع  التحكم من خلال  الوكلاء سياسات  يتعلم  النماذج، حيث  إطار عمل خالٍ من 

، الاستقرار وقابلية التفسير،  MPCو  LQRو  PIDبطريقة التجربة والخطأ. في حين تضمن وحدات التحكم الكلاسيكية، مثل  

ل في حالات ديناميكيات النظام غير الخطية وغير  إلا أنها تميل إلى الاعتماد على نماذج دقيقة وتصبح دون المستوى الأمث

المؤكدة. نتناول في هذا العمل معيار التحكم في مستوى السوائل بخزانين، بما يتميز به من اقتران عالٍ وتدفقات خارجية غير 

يتم التحكم   (.WPLخطية، باستخدام صياغة التعلم التعزيزي متعدد الوكلاء بواسطة خوارزمية تعلم السياسات الموزونة )

لضمان تقارب سلس في ظل عدم الثبات. تظُهر نتائج   WPLفي مستوى الخزان الثاني بواسطة ترجيح تدرج السياسات في  

المحاكاة تتبعًا سريعًا لنقطة الضبط، وتجاوزًا ضئيلًا، ومقاومة أعلى للاضطراب، وتعكس فعالية، فضلًا عن الابتكار، في 

 ي العمليات.على مشكلات التحكم ف WPLتطبيق 
 

 التعلم التعزيزي، التعلم بالسياسة المرجحة، التحكم على مستوى الخزانين. الكلمات المفتاحية:

Introduction 

Reinforcement learning (RL) is a learning framework in which an agent learns to transform situations into actions 

through interacting with the environment and enhancing its performance from the resulting feedback [1]. RL has 

been widely applied and has gained much attention in intelligent robotic control systems [5]–[8]. It has also been 

demonstrated to be an effective tool for solving nonlinear optimal control problems [9]. Reinforcement learning 

(RL) is a paradigm for learning whereby an agent improves its action by interacting with its environment. At every 
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discrete time instant, the agent senses the present state, chooses an action, and causes the environment to evolve 

into a new state. A scalar reward is then received, quantifying how valuable the new transition is. The goal of the 

agent is to gain a policy that maximizes the long-run expected cumulative reward [1], [10]. 

Reinforcement learning (RL) is a powerful model-free control approach that enables autonomous tuning of 

parameters through trial-and-error interactions driven by the controller’s exploration of the environment [1]. The 

combination of reinforcement learning algorithms with classical control techniques is a potential solution for the 

development of stable and efficient control systems. Classical controllers such as PID, LQR, or MPC offer stability 

and interpretability and RL offers adaptability in dynamic or uncertain environments where classical methods may 

fall short. Dev et al. [11] integrated classical control theory and reinforcement learning approaches, emphasizing 

the generality and utility of machine learning algorithms in matters concerning control. Puriel et al. [12] proposed 

a method in which the robot’s PID controller is enhanced through compensation using reinforcement learning 

techniques. Bałazy et al. [13] developed a novel reinforcement learning (RL) algorithm that employs a policy 

designed to be robust against object nonlinearity. Lee et al. [14] proposed a near-optimal semi-active suspension 

ride comfort controller based on deep reinforcement learning. Yaghmaie et al. [15] proposed a model-free 

reinforcement learning approach to utilize linear quadratic control and demonstrated the potential of RL in optimal 

control problems without requiring an explicit system model. 

Two tank fluid level control is a classic process control benchmark problem with nonlinear dynamics and 

significant coupling effects [16], [17]. Standard PID or model-based controllers are normally developed on the 

basis of precise system modeling and may underperform in the presence of disturbances or parameter variations 

[2]. Reinforcement learning (RL), particularly in the multi-agent case, is an appealing alternative since it has the 

ability to learn directly from experience in the environment the control policies [1], [5]. In this paper, we propose 

a new application of the Weighted Policy Learning (WPL) algorithm—a multi-agent RL method—to the two-

tank level control problem. WPL dynamically adjusts the learning rate of agents in the context of policy gradients, 

ensuring smooth and stable convergence for non-stationary multi-agent systems. The approach formulates each 

tank as an independent learning agent, enabling decentralized and adaptive control, thereby dealing with tanks’ 

inherent coupling. The formulation improves not only the robustness and effectiveness of control but also offers 

a new framework for the generalization of game-theoretic MARL approaches to process control problems. 

The Weighted Policy Learning (WPL) Algorithm 

The Weighted Policy Learning (WPL) algorithm [4] employs a policy-gradient approach to update each agent’s 

strategy. In WPL, all players are assumed to have access to the value function of the game, which is used to 

compute the policy gradient δ(𝑠𝑡 , 𝑎). WPL has been proven to converge to Nash equilibria in standard two-player, 

two-action games and in several larger game structures. Remarkably, WPL requires minimal information: each 

agent needs only its own received reward for the chosen action, without knowledge of other agents’ actions, 

rewards, or the game’s payoff matrices. Furthermore, WPL does not require knowing the Nash equilibrium in 

advance. During learning, WPL adjusts its update speed based on the sign of the policy gradient. It adapts quickly 

when the gradient reverses direction and more conservatively when the gradient maintains its sign. The sign of 

the policy gradient is determined via: 

δ̂(𝑠𝑡 , 𝑎)  =  𝑄(𝑠𝑡 , 𝑎) − 𝑉(𝑠𝑡), 

where 𝑄(𝑠𝑡 , 𝑎) represents the expected value of taking the action 𝑎 in state 𝑠𝑡 and 𝑉(𝑠𝑡) represents the state’s 

average reward. 

The learning agent uses the following equation to update its Q-table: 

𝑄𝑡+1(𝑠, 𝑎𝑡) = (1 − θ)𝑄𝑡(𝑠, 𝑎𝑡) + θ [𝑟𝑡 + ζ max
𝑎′

𝑄𝑡 (𝑠′, 𝑎′)]          (1) 

Here, 𝑡 denotes the number of times the state 𝑠 has been visited, θ represents the learning rate, 𝑟𝑡 is the immediate 

reward received by the agent at state 𝑠, 𝑎𝑡 is the action selected by the agent in state 𝑠, and ζ denotes the discount 

factor. 

The learning agent updates its Q-table and policy over time. The Q-table is updated as in the previous equation, 

Eq. (1), and the policy is updated using the following rule [4]: 
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π𝑡+1(𝑠𝑡 , 𝑎) = π𝑡(𝑠𝑡 , 𝑎) + ηδ(𝑠𝑡 , 𝑎)          (2) 

and, 

π𝑡(𝑠𝑡+1) = limit(𝜋𝑡(𝑠𝑡+1)) 

Here’s how the policy gradient δ(𝑠𝑡 , 𝑎) is calculated [4]: 

δ(𝑠𝑡 , 𝑎) = { 
δ̂(𝑠𝑡 , 𝑎). (1 − 𝜋𝑡(𝑠𝑡 , 𝑎))     𝑖𝑓  �̂�(𝑠𝑡 , 𝑎)  >  0

�̂�(𝑠𝑡 , 𝑎). 𝜋𝑡(𝑠𝑡 , 𝑎)                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
}          (3) 

where: 

η is a learning rate such that η ∈ (0,1), 𝑉(𝑠𝑡) = ∑ π𝑡(𝑠𝑡 , 𝑎)𝑄𝑡(𝑠𝑡 , 𝑎)𝑎∈𝐴  is the average reward at state 𝑠𝑡, and 

𝑙𝑖𝑚𝑖𝑡(𝜋) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑥:𝑣𝑎𝑙𝑖𝑑(𝑥)|𝜋−𝑥| ensures the updated policy is a valid probability distribution. 

Algorithm 1 summarizes the WPL learning procedure for the learning agent. 

Algorithm 1 Simplified Weighted Policy Learning (WPL) Algorithm for the learning agent 

1: Initialize: Learning rate θ, discount factor ζ, and policy learning rate η. 

2: Set all 𝑄(𝑠, 𝑎) to 0 and policy π(𝑠) to initial values (ICs). 

3: while the task is not finished do: 

4: Choose action at in state 𝑠𝑡 using π𝑡(𝑠𝑡) with exploration. 

5: Receive reward 𝑟𝑡 and next state 𝑠𝑡+1. 

6: Update 𝑄(𝑠𝑡 , 𝑎𝑡) using Eq. (1). 

7: Compute 𝑉(𝑠𝑡). 

8: for each action 𝑎 do: 

9: Update 𝜋𝑡+1(𝑠𝑡 , 𝑎) using Eq. (2). 

10: end for 

11: Normalize policy: 𝜋𝑡+1(𝑠𝑡) = 𝑙𝑖𝑚𝑖𝑡(𝜋𝑡+1(𝑠𝑡)) 

12: end while 
 

Tow-Tank Liquid Level System 

A. System Description: 

The two-tank liquid level system consists of two vertically placed tanks. Tank 1 receives input from the exterior 

and output to Tank 2. Tank 2’s output goes to the environment. The two tanks should be cylindrical with a constant 

cross-sectional area and incompressible fluid. 

The following notations can be employed: 

• 𝐴1, 𝐴2: Cross-sectional area of Tank 1 and Tank 2 [𝑚2]. 

• ℎ1(𝑡), ℎ2(𝑡): Liquid heights in Tank 1 and Tank 2 at time 𝑡 [m]. 

• 𝑞𝑖𝑛(𝑡): Rate of inflow into Tank 1 [𝑚3/𝑠]. 

• 𝑞12(𝑡): Rate of flow from Tank 1 into Tank 2 [𝑚3/𝑠]. 

• 𝑞𝑜𝑢𝑡(𝑡): Rate of outflow from Tank 2 to the environment [𝑚3/𝑠]. 

• 𝐶1, 𝐶2: Flow coefficients for Tank 1 and Tank 2 discharge outlets. 

Assuming flow rates follow Torricelli’s Law for free outflow under gravity [2], the inter-tank and output flow 

rates are given by: 

𝑞12(𝑡) = 𝐶1√ℎ1(𝑡) − ℎ2(𝑡)          (3) 

𝑞𝑜𝑢𝑡(𝑡) = 𝐶2√ℎ2(𝑡)          (4) 
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B. Continuous-Time Model 

Imposing a mass balance on the two tanks results in the following first-order nonlinear differential equations [3]: 

Tank 1: 

𝐴1
𝑑ℎ1(𝑡)

𝑑𝑡
= 𝑞𝑖𝑛(𝑡) − 𝐶1√ℎ1(𝑡) − ℎ2(𝑡)          (5) 

Tank 2: 

𝐴2
𝑑ℎ2(𝑡)

𝑑𝑡
= 𝐶1√ℎ1(𝑡) − ℎ2(𝑡) − 𝐶2√ℎ2(𝑡)          (6) 

These equations capture the nonlinear behavior of the tank system due to the square-root flow relationships. 

C. Discrete-Time Model: 

Using the forward Euler method for discretization with a sampling time 𝑇𝑠, the discrete-time model becomes [2], 

[3]: 

ℎ1(𝑘 + 1) = ℎ1(𝑘) +
𝑇𝑠

𝐴1
(𝑞𝑖𝑛(𝑘) − 𝐶1√ℎ1(𝑘) − ℎ2(𝑘))          (7) 

ℎ2(𝑘 + 1) = ℎ2(𝑘) +
𝑇𝑠

𝐴2
(𝐶1√ℎ1(𝑘) − ℎ2(𝑘) − 𝐶2√ℎ2(𝑘))          (8) 

This discrete model is suitable for digital control design and simulation applications. 

Control Framework and Reward Design 

A. State Discretization Method: 

To enable the tabular learning of the WPL, continuous system states are discretized into a finite set of indices. 

Specifically, the state is defined by the error between the setpoint and the level of Tank 2, ℎ𝑒𝑟𝑟𝑜𝑟 = ℎ𝑟𝑒𝑓 − ℎ. The 

error is first limited to the range [ℎ𝑒𝑟𝑟𝑜𝑟𝑚𝑖𝑛
, ℎ𝑒𝑟𝑟𝑜𝑟𝑚𝑎𝑥

] in order to limit the impact of outliers. A non-homogeneous 

binning technique is subsequently applied to both variables. The space of errors is quantized more finely near zero 

(i.e., near the setpoint) to enhance accuracy of control in sensitive areas. 

B. State-Action Space: 

Every continuous variable is mapped onto the closest bin, and the generated bin indices are concatenated into a 

single discrete state index through row-major flattening. This creates a compact and resolution-aware discrete 

state representation that allows efficient learning and generalization in reinforcement learning-based control tasks. 

Actions 𝑎𝑡 are chosen through an ϵ-greedy policy to trade-off exploration and exploitation. The actions are 

specified as follows in Table 1: 

Table 1: The actions of the learning agent. 

Actions Values 

0 0.0 

1 0.2 

2 0.4 

3 0.8 

4 1.2 

5 1.6 

6 2.2 
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C. Reward Function for the WPL algorithm in a Two-Tank Level System: 

The objective of the learning here is to maintain the level of the second tank, ℎ2(𝑡), as close as possible to the 

level setpoint ℎ𝑟𝑒𝑓 . The WPL algorithm selects the proper action at each state that will lead eventually to minimize 

the level error. 

The reward function at time t is formulated as: 

𝑟(𝑡) = −α1𝑒(𝑡)2 − α2Δ𝑒(𝑡)2 − α3Δ𝑢(𝑡)2          (9) 

where, α1, α2, α3 > 0 are weighting coefficients,  

𝑒(𝑡) = ℎref − ℎ2(𝑡) 

is the error at time𝑡,  

Δ𝑒(𝑡) = 𝑒(𝑡) − 𝑒(𝑡 − 1) 

is the change in error, and 

Δ𝑢(𝑡) = 𝑢(𝑡) − 𝑢(𝑡 − 1) 

is the change in controller output. 

• The term −𝛼1𝑒(𝑡)2 penalizes large deviations from the reference level, encouraging accuracy. 

• The term −𝛼2Δ𝑒(𝑡)2 encourages stability, discourages oscillations, and penalizes rapid changes in error. 

• The term −𝛼3Δ𝑢(𝑡)2 promotes smooth control signals and penalizes aggressive control actions. 

Simulation and Results 

A. Simulation Setup: 

The WPL is implemented on a two-tank liquid level system in order to regulate the level of the second tank, ℎ2, 

to a target reference level ℎ𝑟𝑒𝑓  . 

The dynamics of the two-tank liquid level system are defined as follows: 

𝑄out1 = 0.3√ℎ1 

𝑄out2 = 0.3√ℎ2 

ℎ1 and ℎ2 represent the fluid levels in tank 1 and tank 2, respectively. The cross-sectional areas of both tanks and 

the timestep used are defined as 𝐴1 = 1.0, 𝐴2 = 0.8, Δ𝑡 = 0.05 seconds. During the learning phase, the setpoint 

level ℎ𝑟𝑒𝑓  was randomly initialized within the range 5 to 10 meters. The reinforcement learning agent uses 

discretized states based on the level error (𝑒𝑟𝑟𝑜𝑟 = ℎ𝑟𝑒𝑓 − ℎ). The level error is clamped within the range [−1, 1] 

to avoid excessively large deviations and linearly spaced in a total of 107 states: 

• 33 linearly spaced bins in [−1,−0.2], 

• 41 linearly spaced bins in [−0.1, 0.1] (high-resolution region near the setpoint), 

• 33 linearly spaced bins in [0.2, 1]. 

 

B. The WPL Algorithm Parameters: 

The WPL algorithm parameters were set as follows: 

• Number of episodes: 50. 

• Discount factor: ζ= 0.80. 

• Learning rate start: θ = 0.7, decaying to a minimum of 0.1. 

• Exploration rate (epsilon) start: ϵ = 1.0, decaying to a minimum of 0.1. 

• Policy update rate start: η = 0.1. 

• Maximum episode length: 2000 time steps. 

 

C. Results: 

The WPL’s learning agent was trained over 50 episodes. During testing, the reference level was set to ℎ𝑟𝑒𝑓  = 10.0 

meters initially. The system was simulated for 10,000 steps with reference level changes at 𝑡 = 3000 (set to 5.0 

m) and 𝑡 = 6000 (back to 10.0 m) to test tracking performance. Figure 1 shows the level of the second tank over 

time. The figure shows that the WPL algorithm were successfully able to regulate the level of the second tank to 

the reference with fast convergence and minimal overshoot, despite sudden changes in the target level.  The figure 

also shows that the response obtained by the WPL algorithm is better than the response obtained by the PID 

controller in terms of fast convergence and lower overshoot. 
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D. Discussion: 

The performance of the WPL algorithm in a two-tank liquid level system was evaluated in the simulation 

experiments against the performance of a conventional PID controller. The two-tank liquid level system is a 

nonlinear system because it’s governed by the nonlinear flow equations. In the simulation experiments, the 

objective was to regulate the level of the second tank (ℎ2) so that it tracks a reference setpoint (ℎ𝑟𝑒𝑓), where the 

setpoint is changed at 𝑡 = 3000s (10m → 5m) and at 𝑡 = 6000s (5m → 10m). The simulation results show that the 

WPL algorithm succeeded to maintain the level of the second tank at the reference setpoint, with fast convergence 

and minimal overshoot, despite sudden changes in the target level. The simulation results also show that the WPL 

algorithm outperformed the conventional PID controller in terms of fast convergence and lower overshoot. 

 
Figure 1: Tank level ℎ2 response over time under WPL control with varying reference levels ℎ𝑟𝑒𝑓 . 

Conclusion 

In this paper, a new application of the Weighted Policy Learning (WPL) algorithm to the nonlinear two-tank liquid 

level control problem is proposed. In contrast to conventional model-based controllers like PID or MPC that need 

proper modeling and tuning, the WPL algorithm learns policies by experience without knowing system dynamics. 

The WPL algorithm was also able to effectively deal with the coupled dynamics, between the two tanks, and learn 

non-stationary behavior. To allow tabular learning, system states were discretized according to a non-uniform 

binning policy that gave higher priority to accuracy near the setpoint. By framing the adjustment of the second 

tank’s level as a reinforcement learning problem, the WPL algorithm succeeded to regulate the level at its desired 

setpoint, despite of the system’s nonlinearity and the sudden changes in the desired level target. Simulation 

experiments demonstrated significant improvement over conventional PID control in terms of fast convergence, 

low overshoot, and zero steady-state error, without human tuning. 
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