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Abstract:  

In this study, we delve into the intricate aspects of graphic topology. We establish the special cases in which 

topological spaces have a graphic topology, and relation between the graphic topology and certain graphs, we 

present connected graphic topology, moreover, show that the graphic topological space is irreducible if and only 

if the graph is empty. Finally, we offer the of connectivity of graph through special conditions on adjacency sets.                                                                                                                  

 

Keywords: graph theory, graphic topology, connectedness, irreducible set. 

 

 الملخص 

ببعض الأنواع الخاصة من البيان.  تم تحليل    وعلاقتهتم تقديم عرض تفصيلي للفضاء التبولوجي البياني    الورقة،في هذه  

علاوة على ذلك تم التوصل إلى أنَ الفضاء البياني   فيها.الشروط التي تؤثر    التركيز علىمع    الفضاء،خاصية الترابط في هذا  

يم شروط خاصة كان البيان خالي. وأخيراً تمت مناقشة إمكانية ترابط البيان من خلال تقد وفقطيكون غير قابل للاختزال إذا 

 .على المجموعات المجاورة في الفضاء

 

 . قابلة للاختزالالالمجموعات غير  الترابط، البياني،التبولوجي  البيان،نظرية  الكلمات المفتاحية:

1.  Introduction 

Graph theory stands as one of the most fundamental and significant branches of mathematics and interesting 

branches of mathematics nowadays, which has many applications in our real life, it is a fundamental and powerful 

analytics tool for many domains, that not only deepens our understanding of various mathematical concepts but 

also helps us to optimally solve many practical problems which illustrates its widespread application. Defining 

endowing a graph with a topology enhances its structural depth and complexity., from this point of view, many 

topologies have been defined with different bases by lots of researchers, a number of them studied generating 

Topological structures defined on the vertex set of directed graphs provide deeper insights into their properties 

and relationships, others on undirected graphs (see [1,2,4,8,10,11,14]). Research continues in graphical spaces as 

a fertile and evolving field, and in recent years there has been great progress in the study of graphic topological 

spaces, where researchers have built new topologies different from their predecessors and have been employed in 

more precise fields such as biomathematics and cardiology. One of these topologies was presented by Jafarian 

and others in [13] which defined on the vertices set of a locally finite undirected graph without isolated vertex and 

was called the graphic topology. Later many research papers dealt with this topology in more detail, they can be 

found in [3,7,8]. The connectivity property is a topic of interest in graphic topological spaces under study. Zomam 

et al. (2021) explored conditions for Alexandroff spaces to be graphic topological spaces, addressing an open 
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problem in the field. Zomam & Dammak (2022) introduced the Z-graphic topology, which preserves graph 

connectivity and is homeomorphic for isomorphic graphs. They provided a topology is Z-graphic if and only if it 

satisfies both the necessary and sufficient conditions defining its graphical structure. In related work, Hu (2010) 

and Figueroa & Rivera-Campo (2008) investigated the connectivity of tree graphs defined by cycle sets. Both 

studies presented necessary and sufficient conditions for the tree graph to be connected, with Figueroa & Rivera-

Campo (2008) focusing on cases where each edge belongs to at most two cycles. These papers collectively 

contribute to understanding graph connectivity in various topological contexts.  In this paper, our motivation is to 

give an elementary base for studying the fundamental properties of the connectivity of graphic topological spaces 

and suggest the conditions affecting the connectedness  

The paper has four sections, In section 2, we give some fundamental definitions of a graph, topological space, and 

graphic topology. Section 3 is dedicated to some introductory properties and distinctive results of graphic 

topology, the last section is devoted to connected graphic topology, Furthermore, the sufficient conditions for the 

connectivity of graphic topology are introduced.                                                                                                                            

2. Preliminaries                                  

The following section introduces the basic concepts of graph theory. [5,12,17], and topological spaces [9], which 

are utilized in this study. Additionally, the basic concept of graphic topology is introduced.  

A graph 𝐺 is defined as a pair of sets (𝑉, 𝐸), where 𝑉 A non-empty set whose elements are referred to as vertices, 

along with a set E consisting of unordered pairs known as edges, forms the structure of a graph. each edge connects 

two vertices, u and v, which are identified as its end vertices 𝑒 = (u, v) referred to as adjacent. Additionally, each 

vertex is said to be incident with an edge if it is one of the edge’s endpoints 𝑒 if v ∈ 𝑒. edges that share the same 

end vertices are known as parallel edges, while an edge of the form (v, v) is referred to as a loop A graph is 

considered simple if it does not contain parallel edges or loops. A graph with no edges is called empty, while a 

graph with no vertices is referred to as a null graph. Additionally, a graph consisting of a single vertex is known 

as trivial. A set of vertices in a graph that are mutually non-adjacent is termed an independent set. The degree of 

a vertex v, denoted as 𝑑(v), represents the number of edges incident to it.. 𝑑(v), The number of edges incident to 

a vertex defines its degree. A vertex with a degree of zero is known as an isolated vertex, while a vertex with a 

degree of one is called a pendant vertex. A graph is classified as finite if both 𝑉 and 𝐸 are finite sets; otherwise, 

it is considered infinite. An infinite graph is termed locally finite if every vertex within it has a finite degree. 

A subgraph of a graph 𝐺 consists of vertices that belong to 𝑉 and edges that are contained within 𝐸. A graph is 

considered connected if any vertex can be reached from any other vertex by following the edges, and disconnected 

otherwise. A component of graph 𝐺 is a connected subgraph that is not part of a larger connected subgraph. 

 Topology is a branch of mathematics concerned with the study of space and its properties under continuous 

deformation. A topology τ\tau on a set 𝑋 is defined as a collection of subsets of 𝑋, referred to as open sets, such 

that the intersection of any two subsets  𝜏 is a member of 𝜏, the union of any subsets of 𝜏 is a member of 𝜏, also 

the empty set and the whole set are members of 𝜏. The pair (𝑋, 𝜏). A set 𝑋 equipped with a topology is referred 

to as a topological space, or simply called a topological space. The discrete topology on 𝑋 is the topology that 

includes all possible subsets of 𝑋, while the topology that consists only of 𝑋 and the empty set is known as the 

indiscrete or trivial topology. A collection ℬ ⊆ 𝜏 is called a basis of (𝑋, 𝜏) if every nonempty open set is the 

union of certain members of ℬ, and the collection 𝒮 ⊆ 𝜏 is called a sub-basis of (𝑋, 𝜏) if the family of finite 

intersections of members of 𝒮 is a basis of (𝑋, 𝜏).  A space 𝑋 is considered connected if it cannot be expressed as 

the disjoint union of two non-empty open subsets. Equivalently, 𝑋 is connected if its only subsets that are both 

open and closed are 𝑋 itself and the empty set. 𝑋 are ∅ and 𝑋. A component C of a topological space 𝑋 is a 

maximal connected subset of 𝑋; that is, C is connected and it is not a proper subset of any connected subset of  𝑋  

 In what follows, let 𝐺 = (𝑉, 𝐸)    A simple, undirected, locally finite graph without isolated vertices is one in 

which every vertex has a finite degree and no edges are repeated or self-looping. The graphic topology 𝜏𝐺 on the 

set 𝑉 is the topology generated by the sub-basis 𝒮𝐺 such that 𝒮𝐺 = {𝐴𝑥: 𝑥 ∈ 𝑉}, whenever 𝐴𝑥 is the set of all 

vertices adjacent to 𝑥, the pair (𝑉, 𝜏𝐺) is called graphic topological space.   

All graphs throughout this paper are locally finite simple graph.   
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     Graphic topology.3   

Graphic topology in mathematics, a topological graph represents a graph within a plane, where its vertices 

correspond to distinct points and its edges define connections between them. define the adjacency sets that 

generate the topology.                                                                                      

Definition 3.1. A topological space (𝑉, 𝜏) is termed graphic if there exists a graph 𝐺 such that it satisfies the 

necessary structural conditions( τ = τG  )    

 Example 3.2. The discrete topology on the set 𝑉 = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5} is the graphic topology that is generated 

by C5                                                                                                                     

 
Figure (1) The graph  C5. 

For every vertices 𝑣𝑖  in C5, we have: 

𝐴𝑣1
= {𝑣2, 𝑣5}, 𝐴𝑣2

= {𝑣1, 𝑣3},  𝐴𝑣3
= {𝑣2, 𝑣4},  𝐴𝑣4

= {𝑣3, 𝑣5},  𝐴𝑣5
= {𝑣4, 𝑣1} 

Thus, 𝒮𝐶5
= {𝐴𝑣1

, 𝐴𝑣2
, 𝐴𝑣3

, 𝐴𝑣4
, 𝐴𝑣5

},  and ℬ𝐶5
= {{𝑣1}, {𝑣2}, {𝑣3}, {𝑣4}, {𝑣5}}  

So, the topology generated by 𝐶5 is 𝜏𝐶5
= 𝒫(𝑉), which shows that 𝜏𝐶5

 is a discrete topology on V.                                                                                                                                                      

Remark 3.3. It is clear for any graph 𝐺, the graphic topology is not indiscrete, because 𝐴v ≠ 𝑉 for every v ∈ 𝑉; 

therefore, the indiscrete topological space is not graphic.                                    

In graph G, for each 𝑥 ∈ 𝑉,  𝑈𝑥   is defined as the intersection of all open sets containing a given point or subset 

defines its smallest surrounding topology a given set or point within the space.   𝑥,  is defined as the smallest open 

set that contains a given set or point 𝑥, it is easy to check that the family {𝑈𝑥: 𝑥 ∈ 𝑉} represents a basis for the 

topology τG, moreover, it is contained in any other basis, this is what is mentioned in the following definition;     

Definition 3.4. if G = (V, E) be a graph. For each  𝑥 ∈ 𝑉, the family ℳ𝐺 = {𝑈𝑥: 𝑥 ∈ 𝑉} is the minimal basis for 

the topological space (V, τG).                                                                        

Proposition 3.5. Let G = (V, E) be a graph, 𝑈𝑥 is defined as the intersection of all open sets that include a given 

set or point within the space. 𝑥  then             

 i.    𝑈𝑥 = ⋂ 𝐴𝑦𝑦∈𝐴𝑥
 

ii.   𝑧 ∈ 𝑈𝑥 if and only if  𝐴𝑥 ⊆ 𝐴𝑧 

Proof.  

i. Since 𝒮𝐺 is the sub-basis of τG and 𝑈𝑥 is an open set, then 𝑈𝑥 = ⋂ 𝐴𝑦𝑦∈𝑊  for some 𝑊 ⊆ 𝑉. This means that 

𝑥 ∈ 𝐴𝑦 for all 𝑦 ∈ 𝑊. Hence,  𝑦 ∈ 𝐴𝑥 for all 𝑦 ∈ 𝑊, therefore 𝑊 ⊆ 𝐴𝑥 and so 𝑥 ∈ ⋂ 𝐴𝑦 ⊆ 𝑈𝑥.𝑦∈𝐴𝑥
 From the 

definition of 𝑈𝑥 , we have  𝑈𝑥 = ⋂ 𝐴𝑦𝑦∈𝐴𝑥
 which is complete the proof.                                                                                                                                                

 ii. from (i), we have 𝑧 ∈ 𝑈𝑥 equivalent to 𝑧 ∈ ⋂ 𝐴𝑦𝑦∈𝐴𝑥
 , this means that, for all 𝑦 ∈ 𝐴𝑥,   𝑧 ∈ 𝐴𝑦 then 𝑦 ∈ 𝐴𝑧  

and so 𝐴𝑥 ⊆ 𝐴𝑧.                                                                                           □ 

 

the following proposition describes the minimal open sets for the graphic topology;                    

Proposition 3.6.[13] For any 𝑥, 𝑦 ∈ 𝑉 in a graph G = (V, E), we have                                          

i. 𝑈𝑥 ∩ 𝐴𝑥 = ∅, thereover 𝑈𝑥  ⊆ 𝐴𝑥
𝑐 

ii. if 𝑥 adjacent y, then 𝑈𝑥 ∩ 𝑈𝑦 = ∅ 
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Example 3.7. The graph G = (V, E) as in Figure 2, whose vertices set is 𝑉 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒}  

                                                    
Figure (2) The graph G. 

We have, 

𝐴𝑎 = {𝑏, 𝑐, 𝑑, 𝑒}, 𝐴𝑏 = {𝑎, 𝑐, 𝑒}, 𝐴𝑐 = {𝑎, 𝑏}, 𝐴𝑑 = {𝑎, 𝑒}, 𝐴𝑒 = {𝑎, 𝑏, 𝑑} 

Thus, 𝑈𝑎 = {𝑎},  𝑈𝑏 = {𝑏},  𝑈𝑐 = {𝑐, 𝑒}, 𝑈𝑑 = {𝑏, 𝑑},  𝑈𝑒 = {𝑒}                                                    

Therefore, ℳ𝐺 = {{𝑎}, {𝑏}, {𝑐, 𝑒}, {𝑏, 𝑑}, {𝑒} }  is the minimal basis for the topology                    

𝜏𝐺 = {

∅, 𝑉, {𝑎}, {𝑏}, {𝑒}, {𝑎, 𝑏}, {𝑎, 𝑒}, {𝑏, 𝑒},
{𝑐, 𝑒}, {𝑏, 𝑑}, {𝑎, 𝑏, 𝑒}, {𝑎, 𝑐, 𝑒}, {𝑎, 𝑏, 𝑑},

{𝑏, 𝑑, 𝑒}, {𝑎, 𝑏, 𝑐, 𝑒}, {𝑎, 𝑏, 𝑑, 𝑒}, {𝑏, 𝑐, 𝑑, 𝑒}
} 

The terms of the previous proposition can be easily verified through this example.                    . 

Remark 3.8. Note that if 𝑈𝑥 is maximal in ℳ𝐺 then  𝐴𝑥 is minimal in 𝒮𝐺 and vice versa.  

Proposition 3.9 [7].  Let (V, 𝜏) be a finite topological space of order n. if  |𝑈𝑥| = 𝑛 for some 𝑥 ∈ V, then (V, 𝜏) is 

not graphic.                                                                                                     

Corollary 3.10 For any topological space (V, 𝜏), if there exists 𝑥 ∈ 𝑉 such that  𝑈𝑥 = V, then (V, 𝜏) is not graphic, 

on the other hand, if for every 𝑥 ∈ 𝑉,  𝑈𝑥 = {𝑥} it means that (V, 𝜏) is a discrete graphic topological space.                                                                                                

Definition 3.11 Two graphs G1 = (V1, E1), and G2 = (V2, E2) are said to be isometric, and written 𝐺1 ≈ 𝐺2, if 

there exists a bijection 𝜑: V1 ⟶ V2 with (𝑥, 𝑦) ∈ E1 if and only if (𝜑(𝑥), 𝜑(𝑦)) ∈ E2 for any two vertices 𝑥, 𝑦 ∈

V1, the function 𝜑 is called an isomorphism                                                                        

Remark 3.12 It is clear that, if 𝐺1 = (𝑉1, 𝐸1) and 𝐺2 = (𝑉2, 𝐸2) are isomorphic, then the graphic topological 

spaces (V1, τG1
), and (V2, τG2

) are homeomorphic. The converse is not true always, as an example, the graphic 

topologies τCn
 and τKn

 for 𝑛 > 4 are homeomorphic which are discrete, but Cn and Kn are not isomorphic graphs.                                                                   
 

4. Connectedness  

In connected graph, there exists a  path between every pair of its vertices. Here our purpose is to give special cases 

that affect the connectivity of  a graphic topology , and also to give certain  condition on the adjacency sets in a 

graphic space that implies that the graph is connected.        

Theorem 4.1. The graphic topological space (𝑉, 𝜏G) of any disconnected graph G =  (𝑉, 𝐸)   is disconnected.                                                                                                                                    

Proof. Let the graph G be disconnected, and G𝑖 = (𝑉𝑖 , 𝐸𝑖), (𝑖 = 1, … 𝑛)  be the connected subgraphs of G, such 

that {𝐺𝑖: 𝑖 = 1, … 𝑛} is set of all components of G, we have 𝑉𝑖 = ⋃𝑥∈𝑉𝑖
 𝐴𝑥, therefore 𝑉𝑖 ∈ 𝜏𝐺  for all 𝑖 = 1, … 𝑛.  

And since (𝑉𝑖)
𝑐 ⊂ 𝑉 because it is the union of vertices of other components, this means 𝑉 = 𝑉𝑖

𝑐⋃𝑉𝑖, thus 𝑉 is 

union of two non-empty disjoint open subsets in 𝜏𝐺. Hence the space (𝑉, 𝜏G) is disconnected.                                 □           

 In general, the converse of the last theorem is not true, since the graphic topology of 𝐶𝑛 is discrete, which is 

disconnected but the graph 𝐶𝑛  is connected.                                                       
 

Proposition 4.2 The graphic topological space (𝑉, 𝜏G) of a graph G = (𝑉, 𝐸) is disconnected if 𝑈𝑥 = {𝑥} for each 

𝑥 ∈ 𝑉.    

Proof. If 𝑈𝑥 = {𝑥} for each 𝑥 ∈ 𝑉 in the graph G, then 𝜏G is discrete topology and so it is disconnected.                                                                                                                               

□  
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Proposition 4.3 [13]. Let  G = (𝑉, 𝐸) be a graph and (𝑉, 𝜏𝐺) is the graphic topological space of 𝑉. If there is a 

vertex v ∈ 𝑉 with 𝑈v is maximal and minimal in ℳ𝐺 , then the graphic topological space (𝑉, 𝜏G) is disconnected.                                                                                       

Proposition 4.4 Let G = (𝑉, 𝐸) be a graph and (𝑉, 𝜏𝐺) is the graphic topological space of 𝑉. If  (𝑉, 𝜏𝐺) is 

connected, then for each v ∈ 𝑉, there exist two vertices u, w ∈ 𝑉 such that 𝐴𝑢 ⊂ 𝐴v ⊂ 𝐴𝑤. 

Proof. Suppose that  (𝑉, 𝜏𝐺) is connected, then for every vertex v ∈ 𝑉, we have 𝑈v is not maximal nor minimal. 

First, we assume that 𝑈v is not maximal, hence the 𝐴v is not minimal so there is  𝐴𝑢 ⊂ 𝐴v for some u ∈ 𝑉, 

secondly, let 𝑈v be not minimal, this implies that 𝐴v is not maximal which means there is w ∈ 𝑉 and 𝐴v ⊂ 𝐴𝑤, 

this proves the assertion. 

Example 4.5 Consider the cycle graph C5 in Figure 1. the sets 𝐴𝑣1
= {𝑣2. 𝑣5},  𝐴𝑣2

= {𝑣1. 𝑣3},  𝐴𝑣3
=

{𝑣2. 𝑣4},  𝐴𝑣4
= {𝑣4. 𝑣5},  𝐴𝑣5

= {𝑣1. 𝑣4}, are no containment between them, so the graphic topology 𝜏𝐺 is 

disconnected. 

Remark 4.6 The graphic topology (𝑉, 𝜏𝐺) is irreducible if and only if the graph G is empty, because, if there is 

any edge 𝑒 = (u, v) in the graph G, then from proposition (3.6) we have the open sets 𝑈u , 𝑈v are disjoint, but for 

irreducibility, each open sets must be intersect.                                                                          

Graph 𝐺 that is disconnected, has connected components, while the connected graph has only one connected 

component, in this sense the authors in paper (8) defined a new topology on connected components of a graph, 

which is called 𝒵𝐺-graphic topology, and it is defined as follows:                                                                                                                                            

Definition 4.7 [8]. Let G = (𝑉, 𝐸) be a graph, and 𝐴 ⊂ 𝑉. 𝐴 ∈ 𝒵𝐺  if it is a connected component of G.                                                                                                                               

From the previous definition, It is clear that 𝒵𝐺 ⊂ 𝜏𝐺 , that is connected if and only if it is indiscrete.                                                                                                                                         

Theorem 4.8 [8].  Let G = (𝑉, 𝐸) be a graph, the graph G is connected if and only if  𝒵𝐺  is a connected topology 

on  𝑉.                                                                                                               

Remark 4.9 From the above, we can say that the graph G is connected if and only if its 𝒵𝐺-graphic topology is 

indiscrete.                                                                                                         

By defining the 𝒵𝐺-graphic, the researcher in [8] was able to give an answer to the question posed in [13], which 

is: What are the necessary and sufficient conditions for connectivity of the graphic topology?. In this work, we 

present another answer with a different perspective to the sufficient conditions in question posed.                                                                                      

Proposition 4.10 Let G = (𝑉, 𝐸) be a graph and (𝑉, 𝜏𝐺) is the graphic topological space of 𝑉. If for every distinct 

vertices v, u ∈ 𝑉 we have 𝐴v ∩  𝐴u ≠ ∅ . Then 𝒵𝐺 −graphic space is an indiscrete.                                                                                                                                         

Proof.                                                                                                                                               

By contradiction, let 𝒵𝐺 −graphic space is not indiscrete, then there are 𝐴1, 𝐴2 ∈ 𝒵𝐺  which are components in the 

graph G. so they are open in the space (𝑉, 𝜏𝐺). From the given condition, we have a vertex 𝑤 ∈ 𝑉 such that 

𝑤 ∈  𝐴1 ∩  𝐴2, which is a contradiction, because the components are disjoint.                                                                                                                                   

□ 

Corollary 4.11 The non-empty intersection property of adjacency sets in a graphic topological space 

(𝑉, 𝜏𝐺) implies that  the graph G is connected. 

5. Conclusion                                                                                                                                  

 In this paper definition and properties of graphic topology have been considered, along with the connection 

between graphic topology and undirected locally finite graphs, and also shown that there are topological spaces 

that are not graphic as the indiscrete space, addition the investigation of connectedness and irreducibility of 

graphic topology. Finally, cases that do not meet with the connectedness condition have been studied, and special 

conditions have been presented on adjacency sets in graphic topologies that ensure connectivity of the graph. 
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