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Abstract:  

Conjugate gradient (CG) methods are a class of unconstrained optimization algorithms with strong local and 

global convergence qualities and low memory needs. The Hestenes-Stiefel and Polack-Ribier techniques are 

occasionally more efficient than the Fletcher-Reeves (FR) approach, although it is slower. The numerical 

performance of the Fletcher-Reeves method is sometimes inconsistent, since when the step (Sk) is small, then, 

gk+1≈ gk hence dk+1 and dk can be dependent. This paper introduces a modification to the FR method to overcome 

to this disadvantage. The algorithm uses the strong Wolfe line search conditions. The descent property and global 

convergence for the method is provided. Numerical results are also reported.  
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1-Intrduction 

The gradient of the nonlinear conjugate (CG) approach has several applications in a variety of areas and is a 

particularly effective method for addressing unconstrained minimization problems on a large scale [1].  

The current gradient and prior direction are needed for each iteration of this approach, which is an iterative process 

and is distinguished by minimal memory needs and strong local and global convergence qualities ]2,3  [ .In this article, 

we emphasize the use of conjugate gradient techniques to solve the non-linear unconstrained minimization issue [4] 

.   , )(  min nRxxf   
(1.1) 

 

Where RRf n :  is Constantly differentiable function that is below bounded. A sequencer is created by using 

the conjugate gradient approach. 1  , kx
k

   Starting with the first guess
nRx 

1
, we use repetition 

kkkk
dxx 

1
 (1.2) 

 

When a line search is used to determine the positive step size and the rule is used to create the directions: 

1111
    , gddgd

kkkk



  (1.3) 
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Where )(
kk

xfg  , and let 
kkk

ggy 
1

 and  
kkk

xxs 
1

 , here 
k

  is the CG update parameter. 

There are many conjugate gradient techniques available.]5,6,7,8,9,10,11,12[ and an excellent survey of them, with 

special attention on their global convergence, is given by[13] 

Different CG algorithms correspond to different choices for the scalar parameter
k

 . Some of these methods, such 

as [14],[15]  [ and Conjugate descent proposed by [3] 
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Have high convergence qualities, however jamming may cause them to function poorly in . Contrarily, the techniques 

of [16],[17,18] 
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 May not generally be convergent, but they often have better computational performance. Despite the fact that the 

aforementioned formulas are all identical for convex quadratic functions, however, they perform differently for non-

quadratic functions, the performance  

Coefficient has a significant impact on a non-linear CG method
k

 .  

Many writers have examined the convergence behavior of the aforementioned formulas under some line search 

conditions for a very long time.  ]2,3] 

    The weak Wolfe (WWF) line search conditions in the CG method's already-existing convergence analysis and 

implementation are as follows 

[19]: 

k

T

kkkkkk dgxfdxf   )()(  

k

T

kk

T

kkk dgddxg   )(  

(1.4) 

(1.5) 

 

Where .1     0   and kd is a descent direction. The strong Wolfe (SWF) conditions consist of [20] (1.6) and 

k

T

kk

T

kkk dgddxg   )(  (1.6) 

 

                                      

The sufficient descent property is another, namely  

2

kk

T

k gcdg   (1.7) 

 

                                                         

The nonlinear conjugate gradient methods with the approximate line search techniques must globally converge, 

where c is a positive constant. ]13,3] 

   This paper is organized as follows in Section 2 we modified the FR method and we introduce the modified 

algorithm. The descent property and global convergence for convex functions of our modification method is 

presented in Section 3. By contrasting our method with a few CG methods, some numerical findings are shown in 

Section 4. 

2. Modified FR method       

    The last ten years have seen significant effort made into creating new conjugate gradient method modifications 

that are not only more computationally efficient than the traditional methods, but also have convergence features. 

These procedures are available in [6]. 
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    As a general remark, the convergence theory for the methods with numerator 11  k

T

k gg is better developed than 

the theory for methods with numerator the 1k

T

k gy of k . However, the methods with 1k

T

k gy in numerator of k

perform better in practice than the methods with 11  k

T

k gg in numerator of k  [21]In the FR method if a bad 

direction and a tiny step from kx to 

1kx are generated, the next 1kd  and the next step 1k are also likely to be 

Poor unless a restart  along the gradient direction is performed. This paper is informed by the above idea, a modified 

FR conjugate gradient method was proposed as follows: 

k
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(2.1) 

 

(2.2) 

 

Where, KN1denotes Khalil and Naba. Any conjugate gradient algorithm has a very simple general structure as 

illustrated below. 

The KN1 Algorithm. 

Step 1:  Set an initial point 0x and 0 sufficiently small. Set 00 gd  ;  K=0 

Step 2: Test a threshold for ceasing iterations. If this test is successful, quit; otherwise, move on to step 3 

Step 3: Using the strong Wolfe line search conditions, determine k  

             Compute ,1 kkkk dxx   1kf , 1kg  and kkk ggy  1 , kkk xxs  1  

Step 4: Compute the conjugate parameter 
1KN

k from (2.2). 

Step 5: Compute the search direction 
k

KN

kkk dgd 1

11  
from (2.1) 

Step 6: Start over criteria. If 
11 2.0   kk

T

k ggg  then set 11   kk gd   

Step 7: Set k=k+1 and continue with step 2. 

 

In [22] showed that the FR method generates sufficient descent direction and it’s global convergence for nonlinear 

objective functions according to the following theorem. 

 

Theorem (2.1) 

Assume that FR method is implemented with strong Wolfe line search (1.4) and (1.6), with 2/10  . Then, 

The following inequalities are satisfied by the decent directions produced by the FR method. 

2

111
1

12





 kk

T

k gdg



   for k=0, 1, … 

Based on the above theorem we can prove the descent property of our algorithm KN1with SWF line search in the 

following theorem  

Theorem (2.2) 

  Consider a CG method with the search direction (2.1) and (2.2) which employs a strong Wolfe line search (1.4) and 

(16) with 2/10  then the search, directions are descent. 
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Proof: 

As an example of induction, consider the following. Consider the search direction 
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 Since the last term is positive, therefor  
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 Hence by theorem (2.1) it is descent method the prove is complete. 

Either of the following assumptions is often utilized in convergence analysis for CG algorithms   

Assumptions (A) 

1- The level set )}()(:{ 0xfxfRxS n   is bonded, there exists a constant 

    0B so that Bx   Sx   

2- In some neighborhood Ꞥof S , f is continuously differentiable and it’s 

    gradient is Lipschitz continuous, i.e there exists a constant 0L so that 

     yxLygxg  )()(  for all yx  , Ꞥ 

By assumption (A) there exists Г that )(xg  Г for all Syx  ,  

    [2] show that any method with 
FR

k  is convergent. Based on the following theorem our method is 

convergent 

 

Theorem (2.3) 

Suppose that the assumptions (A) holds. Consider any conjugate gradient 

Method (1.2)-(1.3) where 
FR

k  and where the step-size is determined by the strong Wolfe line search (1.4) and 

(1.6) with .2/1     0   Then, .0inf 
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4. Comparative data and results 

      In this section we present the computation performance of a  
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MATLAB  using a set of unrestricted optimization test problems to implement the  KN1and FR algorithms. Extensive 

or generalized versions of (49) large-scale unconstrained optimization test problems were chosen from ]8]. 

 Different dimensions have been taken into account for each function (where n is the number of variables).  All 

algorithms implement the strong Wolfe line search conditions with 0001.0  and  9.0   and same stopping 

criterion 
6

2
10 kg ,  where 

2
  .     is the maximum absolute component of a vector. 

    The comparison of algorithms are given in the following context. We say that, in the particular problem i the 

performance of Algorithm (Alg1)  

Performance of Alg1 was superior to that of Alg2 if the number of restarts (irs), iterations (iter), or function-gradient 

evolutions (fg) of Alg1 was smaller than the equivalent number of each for Alg2 in each case. 

Details of the numerical outcomes for the Fletcher-Revees (FR), Hestenes-Stiefel (HS), and our approach are 

presented in Table (1). (SPDY).  

Compare the results of the method KN with those of other methods (FR&HS) in Table-1 
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S 

Itr /Tcpu/  

FR 

Itr /Tcpu/  

KN1 

Itr /Tcpu/  

Problems 

Name/n 
No. 

348/0.041/9.54e-007 

Maximum iteration 

51/0.008/8.63e-007 

Maximum iteration 

32/0.184/9.18e-007 

21/0.011/4.91e-007 

cosine/100 

cosine/1000 
1.  

33/0.023/9.41e-007 

33/0.023/9.41e-007 

21/0.011/4.04e-007 

21/0.047/4.21e-007 

15/0.019/4.88e-007 

17/0.045/1.32e-007 

dixmaana/90 

dixmaana/900 
2.  

31/0.021/9.37e-007 

20/0.058/6.90e-007 

13/0.010/1.57e-007 

20/0.056/7.40e-007 

15/0.020/7.16e-007 

13/0.062/7.36e-008 

dixmaanb/90 

dixmaanb/900 
3.  

26/0.016/7.02e-007 

32/0.110/7.84e-008 

23/0.012/4.11e-007 

25/0.051/7.44e-007 

16/0.021/3.91e-007 

16/0.046/4.38e-007 

dixmaanc/90 

dixmaanc/900 
4.  

27/0.017/4.76e-007 

39/0.151/7.67e-007 

27/0.012/2.72e-007 

26/0.055/9.73e-007 

18/0.019/4.18e-007 

20/0.049/8.77e-007 

dixmaand/90 

dixmaand/900 
5.  

90/0.027/9.77e-007 

220/0.225/9.05e-007 

216/0.065/9.95e-007 

579/0.734/9.67e-007 

85/0.034/6.24e-007 

268/0.329/8.57e-007 

dixmaane/90 

dixmaane/900 
6.  

77/0.024/9.51e-007 

177/0.185/8.15e-007 

230/0.068/9.86e-007 

419/0.576/9.90e-007 

74/0.032/6.19e-007 

171/0.205/7.44e-007 

dixmaanf/90 

dixmaanf/900 
7.  

79/0.024/5.16e-007 

188/0.184/9.29e-007 

230/0.066/9.19e-007 

Maximum iteration 

77/0.034/6.75e-007 

229/0.263/7.85e-007 

dixmaang/90 

dixmaang/900 
8.  

81/0.022/5.69e-007 

189/0.205/9.42e-007 

150/0.046/9.65e-007 

491/0.620/9.91e-007 

71/0.031/4.05e-007 

230/0.267/7.81e-007 

dixmaanh/90 

dixmaanh/900 
9.  

722/0.168/7.21e-007 

Maximum iteration 

1615/0.512/9.88e-007 

Maximum iteration 

827/0.237/9.27e-007 

"Maximum iteration 

dixmaani/90 

dixmaani/900 
10.  

582/0.128/9.55e-007 

Maximum iteration 

Maximum iteration 

Maximum iteration 

675/0.203/5.88e-007 

"Maximum iteration 

dixmaanj/90 

dixmaanj/900 
11.  

744/0.173/9.99e-007 

Maximum iteration 

Maximum iteration 

Maximum iteration 

1106/0.340/7.09e-007 

Maximum iteration 

dixmaank/90 

dixmaank/900 
12.  

421/0.123/9.62e-007 

Maximum iteration 

Maximum iteration 

Maximum iteration 

443/0.144/7.39e-007 

982/1.189/7.37e-007 

dixmaanl/90 

dixmaanl/900 
13.  

307/0.011/9.34e-007 

Maximum iteration 

1641/0.071/9.27e-007 

Maximum iteration 

388/0.022/8.40e-007 

Maximum iteration 

dixon3dq/30 

dixon3dq/300 
14.  

75/0.005/7.23e-007 

74/0.007/6.49e-007 

184/0.009/7.14e-007 

157/0.011/5.31e-007 

75/0.008/4.19e-007 

113/0.008/8.43e-007 

dqdrtic/30 

dqdrtic/300 
15.  

45/0.010/9.92e-007 

215/0.748/4.98e-007 

138/0.035/3.72e-007 

732/1.863/7.33e-007 

31/0.010/8.59e-007 

42/0.062/6.61e-007 

edensch/100 

edensch/1000 
16.  

297/0.039/5.03e-007 

Maximum iteration 

633/0.129/5.30e-007 

Maximum iteration 

Maximum iteration 

Maximum iteration 

eg2/100 

eg2/1000 
17.  

140/0.022/5.61e-007 

Maximum iteration 

356/0.055/9.49e-007 

Maximum iteration 

71/0.010/1.63e-007 

Maximum iteration 

fletchcr/100 

fletchcr/1000 
18.  

Maximum iteration 

Maximum iteration 

Maximum iteration 

Maximum iteration 

Maximum iteration 

Maximum iteration 

freuroth/100 

freuroth/1000 
19.  

917/0.040/6.24e-007 

Maximum iteration 

Maximum iteration 

Maximum iteration 

Maximum iteration 

Maximum iteration 

genrose/100 

genrose/1000 
20.  

2/0.000/3.42e-026 2/0.000/3.36e-028 2/0.005/3.28e-028 himmelbg/100 21.  
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2/0.001/1.22e-027 2/0.001/7.57e-030 2/0.002/7.51e-030 himmelbg/1000 

37/0.008/2.19e-008 

40/0.015/9.21e-007 

72/0.009/7.93e-007 

81/0.020/6.25e-007 

89/0.014/9.60e-007 

222/0.045/2.64e-007 

liarwhd/100 

liarwhd/1000 
22.  

Maximum iteration 

Maximum iteration 

20/0.026/7.49e-008 

Maximum iteration 

18/0.033/2.48e-007 

30/0.761/4.66e-007 

penalty1/100 

penalty1/1000 
23.  

29/0.005/8.17e-007 

52/0.067/6.06e-007 

33/0.007/6.47e-007 

32/0.078/3.64e-007 

16/0.008/9.85e-007 

41/0.063/3.05e-007 

quartc/100 

quartc/1000 
24.  

345/0.015/9.59e-007 

1504/0.150/9.68e-007 

1275/0.063/9.77e-007 

Maximum iteration 

455/0.029/9.51e-007 

1902/0.246/4.59e-007 

tridia/100 

tridia/1000 
25.  

Maximum iteration 

Maximum iteration 

Maximum iteration 

Maximum iteration 

Maximum iteration 

Maximum iteration 

woods/100 

woods/1000 
26.  

Maximum iteration 

Maximum iteration 

2/0.000/1.44e-082 

2/0.003/3.25e-133 

2/0.006/3.13e-083 

2/0.003/2.42e-133 

bdexp/100 

bdexp/1000 
27.  

27/0.004/4.89e-007 

31/0.015/4.15e-007 

41/0.003/9.72e-007 

36/0.009/3.36e-007 

22/0.007/5.65e-007 

24/0.008/6.16e-007 

exdenschnf/100 

exdenschnf/1000 
28.  

32/0.004/5.48e-007 

27/0.007/3.62e-007 

25/0.002/6.58e-007 

45/0.006/3.24e-007 

16/0.005/3.67e-007 

24/0.004/7.22e-008 

exdenschnb/100 

exdenschnb/1000 
29.  

25/0.002/4.41e-007 

35/0.011/9.55e-007 

36/0.002/9.98e-007 

216/0.034/9.41e-007 

18/0.006/5.88e-007 

20/0.006/3.70e-007 

genquartic/100 

genquartic/1000 
30.  

585/0.025/8.96e-007 

Maximum iteration 

1362/0.069/1.00e-006 

Maximum iteration 

661/0.039/7.27e-007 

Maximum iteration 

biggsb1/100 

biggsb1/1000 
31.  

Maximum iteration 

Maximum iteration 

NaN/NaN/NaN 

145/0.073/9.94e-007 

25/0.007/2.74e-007 

24/0.012/5.99e-007 

sine/100 

sine/1000 
32.  

Maximum iteration 

Maximum iteration 

Maximum iteration 

Maximum iteration 

Maximum iteration 

Maximum iteration 

fletcbv3/100 

fletcbv3/1000 
33.  

52/0.005/9.97e-007 

160/0.029/4.70e-007 

Maximum iteration 

Maximum iteration 

48/0.007/8.65e-007 

50/0.014/4.15e-007 

nonscomp/100 

nonscomp/1000 
34.  

1550/0.057/9.52e-007 

Maximum iteration 

Maximum iteration 

Maximum iteration 

1769/0.090/8.99e-007 

Maximum iteration 

power1/100 

power1/1000 
35.  

84/0.004/9.71e-007 

Maximum iteration 

248/0.015/9.28e-007 

Maximum iteration 

91/0.008/4.96e-007 

344/0.053/7.66e-007 

raydan1/100 

raydan1/1000 
36.  

Maximum iteration 

20/0.011/7.87e-008 

14/0.001/4.84e-007 

29/0.007/8.18e-008 

14/0.004/4.84e-007 

18/0.007/4.11e-007 

raydan2/100 

raydan2/1000 
37.  

290/0.046/8.61e-007 

Maximum iteration 

Maximum iteration 

Maximum iteration 

99/0.011/8.38e-007 

Maximum iteration 

diagonal1/100 

diagonal1/1000 
38.  

79/0.005/8.68e-007 

246/0.057/9.60e-007 

158/0.010/7.02e-007 

413/0.106/9.99e-007 

80/0.009/7.57e-007 

313/0.103/7.31e-007 

diagonal2/100 

diagonal2/1000 
39.  

373/0.064/6.81e-007 

Maximum iteration 

Maximum iteration 

Maximum iteration 

119/0.013/5.03e-007 

Maximum iteration 

diagonal3/100 

diagonal3/1000 
40.  

Maximum iteration 

89/1.577/9.27e-007 

Maximum iteration 

Maximum iteration 

Maximum iteration 

98/0.944/9.10e-007 

bv/100 

bv/1000 
41.  

19/0.362/9.77e-007 

21/30.012/8.91e-007 

33/0.358/7.37e-007 

34/33.037/7.63e-007 

17/0.258/1.90e-009 

15/21.924/1.57e-007 

ie/100 

ie/1000 
42.  
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Figure (1) number of iteration 
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Maximum iteration 
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Maximum iteration 

Maximum iteration 
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Maximum iteration 
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Maximum iteration 

"Maximum iteration 

Maximum iteration 

163/0.069/8.46e-007 

"Maximum iteration 
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49.  
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Figure (2) function calculation 

 

 

 

Figure (3) the time it takes to solve the function 
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Conclusion 

The general objective of the presented study is to propose a conjugate gradient algorithm, which can be used to 

obtain the solution of nonlinear optimization functions. Since the two methods, (FR and DY) have modest 

practical performance, but they have strong affinity properties. In addition, the two methods (HS and PRP) often 

have better computational behavior and are not always convergent. Therefore, we proposed method of hybrid 

conjugate gradient, in order to obtain conjugate gradient methods with high computational efficiency and good 

convergence properties. That is, we suggested it to avoid the failure of the method and to improve the performance 

of classical conjugate gradient algorithms, "because the hybrid conjugate gradient algorithms are better than the 

classical conjugated gradient algorithms. Therefore, it was found that the KN1 algorithm proved its efficiency in 

all the problems that were examined and solved. 
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