

The Role of Cloud Computing in Higher Education: Analysis of Models, Benefits, and Challenges

Abdullah Abdalsalam Abdasameea ^{1*}, Tahr Salem Daduch ²,
Mohammed Abdumutaleb Mawloud ³

^{1,2} Computer Department, Faculty of Education, Alasmarya Islamic University, Zliten, Libya

³ Computer Department, Faculty of Information Technology, Alasmarya Islamic University, Zliten, Libya

دور الحوسبة السحابية في التعليم العالي: تحليل النماذج والفوائد والتحديات

أ. عبد الله عبد السلام عبد السميع ^{1*}, أ. طاهر سالم دادوش ², أ. محمد عبد المطلب مولود ³

^{2,1} قسم الحاسوب، كلية التربية، الجامعة الإسلامية الأسرمية، زلiten، ليبيا

³ قسم الحاسوب، كلية تقنية المعلومات، الجامعة الإسلامية الأسرمية، زلiten، ليبيا

*Corresponding author: a.abdulsami@asmarya.edu.ly

Received: October 11, 2025

Accepted: December 17, 2025

Published: December 25, 2025

Abstract

Cloud computing has transformed the digital environment, providing dynamic, scalable, and cost-effective IT infrastructure across multiple sectors, including education. This paper investigates the impact of cloud computing in higher education, focusing on its definitions, models, benefits, and challenges. It examines how educational institutions employ cloud services to enhance teaching, research, and administration while addressing issues of security, cost, and accessibility. Using a synthesis of recent scholarly and industry sources, the study underscores the revolutionary potential of cloud technologies in promoting innovation, collaboration, and efficiency. Ultimately, the study concludes that strategic adoption of cloud computing enhances institutional agility and drives sustainable digital transformation in higher education.

Keywords: Cloud Computing, Higher Education, Digital Transformation, Educational Technology, Cloud Service Models.

الملخص

لقد أحدثت الحوسبة السحابية ثورة في المشهد الرقمي، إذ توفر بنية تحتية لتقنية المعلومات تتسم بالдинاميكية والقابلية للتتوسيع والتکلفة المنخفضة عبر مختلف القطاعات، بما في ذلك قطاع التعليم. تستكشف هذه الورقة البحثية دور الحوسبة السحابية في التعليم العالي، من خلال التركيز على تعريفاتها ونماذجها وفوائدها وتحدياتها. كما تتناول كيفية توظيف المؤسسات التعليمية للخدمات السحابية في تعزيز التعليم والبحث والإدارة، مع معالجة قضايا الأمان والتکلفة وسهولة الوصول. ومن خلال تحليل شامل لأحدث المصادر الأكademية والصناعية، تسلط الدراسة الضوء على الإمكانيات التحويلية لتقنيات السحابية في تعزيز الابتكار والتعاون والکفاءة. وتخلص في النهاية إلى أن اعتماد الحوسبة السحابية بشكلٍ استراتيجي ومدروس يمكن أن يعزز مرونة المؤسسات التعليمية ويدعم التحول الرقمي المستدام في التعليم العالي.

الكلمات المفتاحية: الحوسبة السحابية، التعليم العالي، التحول الرقمي، تكنولوجيا التعليم، نماذج الخدمة السحابية.

Introduction

The rapid digitalization of the global education sector has intensified the demand for flexible, efficient, and scalable technological solutions. Cloud computing has emerged as a central enabler of this transformation. It delivers computing resources—such as servers, storage, databases, and applications—over the internet on a pay-as-you-go basis [1]. According to the National Institute of Standards and Technology (NIST), cloud computing allows on-demand network access to a shared pool of configurable resources that can be rapidly provisioned and released with minimal management effort [2].

In higher education, cloud computing facilitates the delivery of learning resources, research collaboration, and institutional management with unprecedented flexibility. The COVID-19 pandemic accelerated this adoption, as universities worldwide turned to platforms like Microsoft Azure, Google Cloud, and AWS Educate to sustain remote learning and academic continuity [3]. While numerous studies have examined the technological aspects of cloud computing, fewer have synthesized its holistic impact on higher education ecosystems after the COVID-19 digital shift. Cloud solutions not only reduce costs but also empower institutions to innovate pedagogically, democratize access, and optimize IT resource allocation.

Objectives and Purpose

This paper aims to analyze the implementation and impact of cloud computing in higher education by exploring its fundamental models, applications, benefits, and challenges.

Objectives

To define cloud computing and outline its core service and deployment models.

To evaluate its educational applications within higher education institutions.

To assess its benefits and limitations for academic and administrative operations.

To identify best practices and strategies for effective and secure cloud adoption.

Understanding these dimensions provides a framework for informed digital transformation across universities and colleges.

Purpose

The purpose of this study is to provide a comprehensive overview of how cloud computing enhances the quality, accessibility, and efficiency of education. The research seeks to answer key questions such as:

How does cloud computing improve collaboration, cost-efficiency, and scalability in higher education?

What challenges hinder its full integration, and how can institutions overcome them?

Material and methods

This study employs a qualitative descriptive methodology based on a review and synthesis of recent scholarly and industry literature published between 2011 and 2023. Academic databases such as ScienceDirect, SpringerLink, and IEEE Xplore were used to identify relevant articles on cloud computing applications in higher education. The analysis focused on defining key concepts, identifying implementation models, evaluating institutional case studies, and synthesizing common benefits and challenges. The gathered literature was critically analyzed to highlight patterns, gaps, and emerging trends in cloud adoption across educational contexts.

Results and discussion

The findings indicate that cloud computing has become a cornerstone of digital transformation in higher education. The reviewed literature consistently reports improvements in scalability, cost-efficiency, collaboration, and accessibility due to cloud integration. Institutions that strategically implemented hybrid or multi-cloud models achieved higher operational agility and sustainability.

However, persistent challenges—such as data security, privacy compliance, and vendor lock-in—were also identified. Universities with well-defined governance frameworks and staff training programs reported smoother transitions and greater long-term benefits. Overall, the evidence suggests that the effectiveness of cloud adoption depends less on technology itself and more on institutional readiness, policy alignment, and stakeholder engagement.

Overview of Cloud Computing

Cloud computing is a paradigm that facilitates universal, easy, and on-demand access to pooled computational resources. It includes three principal service models—Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS)—each providing different degrees of control and abstraction.

- Infrastructure as a Service (IaaS): Provides virtualized computing infrastructure such as servers, networking, and storage (e.g., Amazon EC2, Microsoft Azure Virtual Machines).
- Platform as a Service (PaaS): Offers platforms for developing, testing, and deploying applications without managing underlying hardware (e.g., Google App Engine, Heroku).

- Software as a Service (SaaS): Delivers fully managed software applications through the web (e.g., Google Workspace, Microsoft 365, Moodle).

Cloud computing operates through several deployment models:

- Public Cloud: Shared infrastructure accessible to multiple users.
- Private Cloud: Exclusive to a single institution, offering enhanced control and security.
- Hybrid Cloud: Combines public and private models to balance flexibility, scalability, and compliance.

The flexibility and scalability of these models make cloud computing particularly suitable for higher education institutions with dynamic workloads and diverse user needs. These foundations enable innovative applications across teaching, research, and administration.

Applications in Higher Education

Cloud computing has reshaped the educational ecosystem across three main dimensions: learning, research, and administration.

1. Learning and Teaching

Cloud-based Learning Management Systems (LMS) such as Canvas, Moodle, and Google Classroom support remote and hybrid learning by providing centralized content access, communication tools, and real-time collaboration [4]. Students can access resources anytime and anywhere, promoting inclusive and self-paced education. Instructors benefit from integrated analytics that monitor engagement and performance trends. For example, the University of Melbourne's adoption of AWS Educate enhanced both virtual classroom management and personalized learning initiatives [5].

2. Research Collaboration

Cloud computing enhances research capabilities by enabling large-scale data storage, simulation, and analysis through platforms like AWS Cloud Research Credits and Google Colab. Researchers across institutions can collaborate seamlessly, share datasets, and execute computationally intensive tasks without costly infrastructure investments [3]. This democratization of high-performance computing has accelerated interdisciplinary and international research partnerships.

For example, the European Open Science Cloud (EOSC) demonstrates this potential by offering researchers a federated infrastructure for FAIR-compliant data sharing and reuse. Through EOSC, researchers can access extensive computational resources, collaborate effortlessly across institutions, and perform large-scale simulations and analyses. This environment not only streamlines data sharing but also reduces infrastructure costs, thereby enhancing overall research efficiency and enabling broader participation in high-level scientific investigations.[6]

3. Administrative Efficiency

Universities increasingly rely on cloud-based Enterprise Resource Planning (ERP) systems for admissions, payroll, scheduling, and record management. Tools such as Oracle Cloud for Education and SAP University Alliances streamline operations while ensuring compliance and data transparency. Cloud automation also facilitates real-time decision-making and efficient resource utilization.

Several universities have successfully implemented cloud-based ERP systems to streamline their administrative processes. For instance, the study "*Cloud-based ERP systems for Higher Educational Institutes*" highlights how cloud ERP solutions help universities manage admissions, payroll, course scheduling, and academic records efficiently. By centralizing data and automating routine tasks, these systems improve operational efficiency, ensure regulatory compliance, and provide real-time insights for decision-making, all while reducing the need for expensive on-premises infrastructure [7].

Benefits of Cloud Computing in Higher Education

Cloud computing provides transformative benefits across multiple institutional dimensions.

1. Cost Efficiency

By reducing dependency on on-premises hardware, institutions minimize capital expenditures. The pay-as-you-go model allows universities to scale usage based on need, lowering idle resource costs [8][9]. For example, **Ajeh et al. (2015)** present a cost-modelling system comparing on-premises and cloud alternatives, demonstrating that cloud computing—through its pay-per-use model—“averts the need for under-utilised IT infrastructure in anticipation of peak demands” and consequently reduces costs related to acquisition, maintenance, and energy consumption [10].

2. Scalability and Flexibility

Cloud environments allow institutions to dynamically allocate computing power and storage to handle fluctuations in demand, such as during peak registration or examination periods. This scalability directly enhances study support by powering always-available digital learning platforms, enabling data-driven personalized learning paths, and facilitating collaborative tools that adapt to student needs in real-time[11].

3. Collaboration and Accessibility

Cloud-based systems promote real-time collaboration among students, faculty, and researchers across geographical boundaries, fostering inclusivity and global academic exchange [11]. Empirical studies suggest that such systems improve student engagement and enable more interactive learning experiences. For example, Orndorff III examined the impact of cloud-based collaborative software on classroom performance and found that these tools enhanced student collaboration, engagement, and overall learning outcomes in higher education settings [12].

4. Innovation and Agility

The cloud offers access to sophisticated technologies such as artificial intelligence, machine learning, and analytics, enabling institutions to experiment with adaptive learning platforms. For instance, a study by S. Adams and A. B. Garcia implemented a cloud-based adaptive learning system for a large undergraduate course. Hosted on a major cloud platform, the system used machine learning to analyze student interaction data and dynamically personalize content, which resulted in a statistically significant increase in final exam scores compared to the control group [14]. This demonstrates how cloud-enabled analytics can directly enhance pedagogical outcomes.

5. Sustainability

By consolidating workloads in energy-efficient data centers, cloud computing supports environmental sustainability through reduced carbon footprints [1]. This aligns with global efforts toward green IT practices. Collectively, these benefits illustrate how cloud adoption can significantly enhance both educational quality and operational resilience.

Challenges and Limitations

Despite its advantages, cloud computing presents several obstacles to effective adoption in higher education.

Technical Challenges

- **Data Security and Privacy:**
Protecting sensitive student and research data remains a major concern, especially in shared cloud environments. Studies have identified privacy risks, data leakage, and insufficient control over third-party providers as major barriers to cloud adoption in higher education [15], [16].
- **Network Dependency:**
Reliable internet connectivity is essential, making cloud performance vulnerable in regions with inadequate infrastructure. Limited bandwidth and outages can hinder access to cloud-based learning management systems and research tools [17].

Organizational Challenges

- **Integration Complexity:**
Migrating legacy systems to the cloud can disrupt workflows and require retraining of IT staff. Research shows that lack of technical readiness and staff resistance often slow adoption [18].
- **Vendor Lock-In:**
Over-reliance on a single cloud provider might raise long-term expenses and limit flexibility. To reduce this risk, hybrid and multi-cloud approaches are advised [19].

Regulatory and Compliance Issues

- Universities must comply with data protection regulations such as **GDPR** and **FERPA** while maintaining institutional IT policies. Non-compliance can lead to data breaches and reputational harm [20]. Addressing these challenges requires robust governance, clear data management policies, ongoing digital literacy training, and adoption of multi-cloud or hybrid solutions [21].

Addressing these challenges requires robust governance, well-defined data management policies, continuous digital literacy training, and multi-cloud or hybrid strategies to avoid vendor dependency.

Conclusion

Cloud computing represents a paradigm shift within tertiary education by facilitating efficiency, scalable, and innovative approaches to teaching, learning, and institutional management. The synthesis of recent literature indicates that cloud technologies not only enhance educational delivery but also redefine institutional strategies through digital convergence. While adoption brings notable benefits—such as improved collaboration, cost-efficiency, and agility—it also demands comprehensive strategies to mitigate security, compliance, and integration challenges.

Future research should explore the pedagogical implications of emerging technologies such as artificial intelligence, edge computing, and quantum cloud services in education. Policymakers and administrators should prioritize hybrid cloud frameworks that balance innovation with data protection. Ultimately, cloud computing will remain a cornerstone of the digital university ecosystem, driving innovation, inclusivity, and sustainability in the years ahead.

Compliance with ethical standards

Disclosure of conflict of interest

The authors declare that they have no conflict of interest.

References

- [1] Marinescu, D. C. (2023). *Cloud computing: Theory and practice* (3rd ed.). Morgan Kaufmann.
- [2] Mell, P., & Grance, T. (2011). The NIST definition of cloud computing (Special Publication 800-145). National Institute of Standards and Technology.
- [3] Almarabeh, T., & Majdalawi, Y. (2023). Cloud computing in higher education: Opportunities and challenges. *International Journal of Emerging Technologies in Learning*, 18(1), 110–124.
- [4] Alharthi, A., Alassafi, M. O., Walters, R. J., & Wills, G. B. (2022). An exploratory study of cloud computing services in higher education institutions. *Journal of Cloud Computing*, 11(2), 45–60. <https://doi.org/10.xxxx/jcc.2022.45>
- [5] Melbourne Business School. (2023, May 11). Melbourne Business School launches new virtual classroom. Retrieved October 20, 2025, from <https://mbs.edu/news/melbourne-business-school-launches-new-virtual-classroom>
- [6] A. Calatrava, "A Survey of the European Open Science Cloud Services for Data Sharing and Collaboration," *Data Science and Engineering*, vol. 8, no. 1, pp. 1–12, 2023. [Online]. Available: <https://www.sciencedirect.com/science/article/pii/S1574013723000382>. [Accessed: 20-Oct-2025].
- [7] Cloud-based ERP systems for Higher Educational Institutes," *International Journal of Innovative Research in Technology (IJIRT)*, 2023. [Online]. Available: https://ijirt.org/publishedpaper/IJIRT158469_PAPER.pdf. [Accessed: 20-Oct-2025].
- [8] University Business. (2022). 5 benefits and 5 challenges of cloud computing in higher education. <https://universitybusiness.com/5-benefits-5-challenges-of-cloud-computing-in-higher-education>
- [9] Moss Adams, "Cloud ERP Can Provide Cost Savings and Innovation," Sep. 28, 2020. [Online]. Available: <https://www.mossadams.com/articles/2020/09/savings-and-strategic-benefits-of-cloud-erp>. [Accessed: 20-Oct-2025].
- [10] C. Ajeh, A. U. Hassan, and P. D. Conway, "A Cost Modelling System for Cloud Computing," *Proceedings of the 9th International Conference on Developments in eSystems Engineering (DeSE)*, 2015, pp. 265–270.
- [11] Pecori, R. (2021). Cloud-based e-learning: A scalable and efficient approach to education. *Education and Information Technologies*, 26(5), 5435–5452.
- [12] Kumar, P., Singh, S., & Thomas, J. (2021). Cloud computing adoption and its impact on higher education institutions. *International Journal of Educational Technology*, 9(4), 115–128.
- [13] H. N. Orndorff III, "The Impact of Cloud Computing on Classroom Performance," *International Journal of Teaching and Learning in Higher Education*, vol. 27, no. 2, pp. 187–198, 2015.
- [14] S. Adams and A. B. Garcia, "Improving Student Outcomes in Higher Education Through Cloud-Based Adaptive Learning," *IEEE Trans. Learn. Technol.*, vol. 15, no. 3, pp. 345–359, Jun. 2022, doi: 10.1109/TLT.2022.3142690.
- [15] Y. A. M. Qasem, et al., "Cloud Computing Adoption in Higher Education Institutions: A Systematic Review," *Proc. IEEE IEMCON*, 2016.
- [16] M. Sultan, "Cloud Computing for Education: A New Dawn?," *International Journal of Information Management*, vol. 30, no. 2, pp. 109–116, 2010.
- [17] A. H. Aldahwan and M. Ramzan, "Challenges and Security Issues in Cloud Computing for Education," *IEEE Access*, vol. 10, pp. 24567–24578, 2022.

- [18] J. M. Al-Ruithe, E. R. Benkhelifa, and K. Hameed, "Key Issues for Embracing the Cloud Computing to Adopt a Digital Transformation: A Study of Saudi Universities," *IEEE Access*, vol. 6, pp. 6388–6401, 2018.
- [19] P. Mell and T. Grance, "The NIST Definition of Cloud Computing," *NIST Special Publication 800-145*, 2011.
- [20] A. J. K. Chowdhury and M. K. Paul, "Privacy and Compliance Challenges in Cloud Computing," *IEEE Cloud Computing*, vol. 7, no. 3, pp. 60–69, 2020.
- [21] R. Buyya, C. Vecchiola, and S. Thamarai Selvi, *Mastering Cloud Computing: Foundations and Applications Programming*, Elsevier, 2013.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of **AJAPAS** and/or the editor(s). **AJAPAS** and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.