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Abstract:

Harmonic univalent functions constitute an essential branch of the theory of geometric functions, extending the
classical theory of analytic functions. Recent studies have focused on constructing new subclasses of harmonic
mappings through operator-based approaches, which allow a systematic analysis of their geometric behavior. In
this work, we obtain sufficient criteria of the harmonic function classes SX(m, 8, 8,2, a) and Ck(m, 5, 8,2, a)
corresponding to starlike and convex harmonic mappings associated with k-symmetric points. Moreover,
necessary conditions characterizing the membership of a function f in the subclasses 7'SX(m, 8, 8,2, a) and
TCK(m,5,B,A, a) are established. Finally, explicit growth inequalities are obtained for functions in
TSE(m,§,B,A a).

Keywords: harmonic functions, derivative operator, starlike harmonic functions, convex harmonic functions,

k-symmetric points.
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Introduction
Let U = {z € C:|z| < 1} be the open unit disk and let S;; denote the class of all complex valued, harmonic, sense-
preserving, univalent functions f in U normalized by f(0) = h(0) = f'(0) — 1 = 0 and expressed as f(z) =

h(z) + g(z) where h and g belong to the class A of all analytic functions in U take the form
h(z)=z+Yy,a,z", and g(z) =Yy bpz™ 1.1)

As shown by Clunie and Sheil-Small [3], compactness does not hold for the class §;;, and local univalence with
preservation of sense in any simply connected domain U occurs whenever |h'(2)| > |g'(2)].
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the subclasses §;;(a) and Cy () of Sy correspond to starlike and convex harmonic functions of order @ (0 < a <
1), respectively, as introduced by Jahangiri [7]. Analytically, we have

a i R
—f(Tele) zh1(z)—zg'(z)
* a0 —
feSi(a) & Im{ o) } = Re{ o) 1> «, (1.2)
for0<9<2m0<r<l0<a<landzel.
a0 i
S9(zef (re'®)
f€Cu )
— Re{Zh"(Z)+h’(Z)_Zg”(Z)+g’(Z)} > a, (13)

hi(2)-g1(z)
for0<6<2nr,0<r<l,0<a<landzel.

A generalized operator of differentiation for f € A was defined by Darus and Ibrahim [4] and is represented by
Dy 4 as follows:

Dspsf(2) =z + 5=, [B(n— DA —8) + 1]™ az™, (1.4)
where £ >0, A>0,§ 20, § #A,and m € N,.

According to Sakaguchi [9], the class S¢ contains all functions f € A that are starlike with respect to symmetric
points and verify the following inequality:

zf1(z)
Re{-22—3 >0, (z € U). (1.5)

The Sakaguchi class and its subclasses have been studied by different authors. Chand and Singh [2] investigated

the class Ss*(k), consisting of functions that are starlike with respect to k-symmetric points and satisfy the

following:

Re{%} >0, (z €U, (1.6)
where
fu(2) = %2’5;3 eVf(e¥z), (k=1; € =exp(2mi/k)). (1.7)

According to the definition of f; , we have
fi(2) = L Tk23 7V f(e¥2)
= STAh e[ 2 4 By an(e'2)"]
=2z + Yo anPpz", (18)
fork =1, = exp(2mi/k),z € U and ®,, given by:

1 ok-1 S(n_l)v — {0, n#lk+ 1, (19)

Pn = Zv=o 1, n=lk+1.
Note that S;® = S;.

Now, let Sk(m,d,B,A a) symbolizes the class of complex-valued, sense-preserving, harmonic univalent
functions f = h + g of the form (1.1), which satisfy the condition:

5 _
36084 (re'®)

Im .
Dy S k(retf)

1>a (z=re? ze). (1.10)
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Where z=71e?,0<60<21,0<7r<1, 0<a<1,8>0,1>0,6§>0, § #AmeN, fi(2) = h + Jx,
k =1 and hy, g, defined as

he(2) =z + Xnzz [B(n = DA = 6) + 1]Ma, P2,
91(2) = Xz [B(n = DA = 6) + 1]™b, @pz™  |by] <1, (1.11)

where &, given by (1.9).

Furthermore, let CX(m, 5, B, 7, @) represents the class of sense-preserving harmonic univalent functions f = h +
g of the form (1.1), satisfying the condition:

(0., m i
38\ 5608.8.4f (re'®)
Im M > q, (1.12)
38085 4 k(ret?)
with, z=1e?,0<60<2m,0<r<1,0<a<1,6=>0 >0, A>0 §+AmEN,, fi,(2) =h +

g (k = 1) and hy, gi given by (1.11).

Moreover, let 7SE(m,6,B,A,a) and TCK(m,5,8,A ) represent the subclasses of Sk(m,6,B,A,a) and
Ck(m, 8,8, A, «), respectively for which h and g in f = h + g, take the form

h(z) = z = Xn=2 lan|z",
9(2) = ¥4 |bylz", (Iby] < 1), (1.13)
h, and g, belongto f;, = hy + gy , are given by
he(2) =z — Lnzz [B(n — DA - 8) + 1] |a, | Pnz",
91(z) = Y=y [B(n — DA = 8) + 1]™ by | Py 2", (1.14)

where @,, given by (1.9).

It is clear that the classes:

S§A(0,6,B8,A,0) =S}, TSE((0,8,B,A,0) = TS*, C4(0,5,8,1,0) = Cy, TCA(0,6,B,2,0) = TCy, were studied
by Silverman [10].

SE(0,6,B, A a) = S;(a), TS5(0,8,B,Aa) =TS*(a), C4(0,8,B,A a) = Cy(a), TCL(0,8,B,1 a) = TCy(a)
were studied by Jahangiri [7].

S2(0,8,B,A @) = Sis(a) and TSA(0,68,B,A, a) = TS;;s(a) were studied by Ahuja and Jahangiri [1] and Guney
[6], respectively.

To derive our main results, Theorems 1.1 and 1.2 to Jahangiri [7] are needed.

Theorem 1.1 [7]. Let f = h+ g € Sy, if
T o lanl + X0 T byl < 1, (1.15)

where 0 < @ < 1, then f is harmonic, sense-preserving, univalent in U, and f is starlike harmonic of order «
denoted by Sy (). Condition (1.15) is also necessary if f € TSy ().

Theorem 1.2 [10]. Let f = h + g € Sy, if

w nn-a) o n(n+a)
Yn=2 g lOnl + Znza 71Dl < 1, (1.16)
where 0 < a < 1, then the function f is harmonic and univalent in U with preservation of orientation, and hence
f lies in the class Cy(a) of convex harmonic functions of order a. Condition (1.16) is required for every f €

TCy(a).

18 | AJAPAS: Copyright: © 2025 by the authors. Submitted for possible open access publication under the terms and conditions of the
Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).



Main results

First, the significant conclusions regarding the class S%(m, 8, B, A, a) will be presented.

Theorem 2.1. For f € Sk(m,§,B,A, a), where f = h + g, h and g defined by (1.1), then £, (2) = hy + gr, hx
and g, given by (1.11) belongs to S§(m, 8, B, A, @).

Proof. Suppose that f € §f(m, §,B,A, a). By substituting e’ by e're®®, (v=0,1,2,....,k—1; ¥ =1) in
(1.10) respectively, we observe that (1.10) is also true such that

a .
%Dglﬁ,&f(svrele)
Dng'Afk(s"re‘e)

Im 1> q, v=012,....,k—-1). (2.1)

Based on the definition of £, (z) and €¥ = 1, we know f, (¢'re'®) = eV f, (re!®). Letv = 0,1,2,...,k — 1in
(2.1) respectively, and hence their sum is

a .
=5D8 g S k(re'®)
Dy s k(reif)

. ..m io
k-1 ED&ﬁjf(evre’ )
v=0 SV'DZsr,l/g_,{fk(Tele)

Im{ % }=1Im 1> a, 2.2)

here f,(z) belongs to Sk(m, 8, 8,2, a).
Furthermore, a sufficient criteria for harmonic functions in S%(m, 8, 8,2, a) is obtained.

Theorem 2.2 Let h and g given by (1.1), f = h + g and hy, g, given by (1.12), f, = hy + gi. If

n+

28 b, |J[B(n — DA = 8) + 1" < 2, 23)

o n—-ady
Zn:l [ 1-a |an| +

where0 <a <1, >0, 6§=0A1>0, § #Ame Nyaq, =P, =1,and &, given by (1.9). Then f is
harmonic univalent in U, with sense-preserving and f € St(m, 8, 8,1, a).

Proof. For a;, = 1 in Theorem 1.1, then

n—-a n+a

Yn=1 [T 1anl + 1= byl]

1-a 1-a

< ¥y S5 an] + S by [][B(n — DA - 8) + 1]

1-a

<2

’

Using Theorem 1.1, we have that f is starlike and harmonic univalent in U, with sense-preserving. To show f €
Sk(m, 8, B, A, @), the condition (1.10) is needed to obtain that:

z (Dg,lﬁ,xh(Z))’—W
D5 sk (2)+D g (Ik(2)

=Re{55)

> a

a .
aaP8p.f (re™®)
D'g S k(reid)

Im{ } = Re{

’

wherez=71e%,0<r<1,0<6<2m, 0<a<1,>0,1>06=>0 6§ #Am€eENyandk > 1.

A(z) = z(D5p ch(2))" — 2(Dg g .9 (2))'

=z+ Y n[B(n — DA —68) + 1]Ma,z" — Yo, n[f(n — DA - 6) + 1]™b, 2", (2.4)
and

B(z) = DS’,};,&fk(Z)

=z+ Y5 [B(n = DA = 8) +1]"ay®nz™ + X7, [B(n — DA = 6) + 1]mb,Ppz™  (2.5)
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where @, given by (1.9). By usingRe(w) 2 a & |1 —a+w| = |1+ a — w]|, itenough to
see that

|A(2) + (1 — @)B(2)| — |A(z) — (1 + @)B(2)| = 0. (2.6)
By replacing A(z) and B(z) as given in (2.4) and (2.5) in (2.6), we get

4(2) + (1 - @B@)| - |A@) ~ (1 + )B())
= |(1 = @)Dy e (2) + 2D ch(2)) + (L = )DF 90 (2) — 2(D5 9 (D))
—I(1 + @)Dy shie(2) = 2D ch(2)) + (1 + )DFy 90 @) + 2(D}p .9 ()|

=2 -mz+ X (n+ (1 —a)P)[f(n - DA -6) +1]"a,z"

—2n=1 (M= (1= a)P)[B(n = DA = 6) + 1]™byz"|

—l—az+ 37, (n— 1+ a)P)[B(n - 1A= 6) +1]"a,z"

—Zner M+ A+ )P)[B(n = DA = 8) + 1]™byz"|
2 2=zl =Xz (n+ (1= a)®)[B(n = DA = 8) + 1]™|an||2|"
—2n=1 (= (A = )P)[B(n — DA = 6) + 1]™|by||z|"
—alz| = ¥p, (n— A+ a)P)[B(n — DA = 8) + 1] |ay]|z|"
—2Zn=1 (0 A+ )P)[B(n = DA = 8) + 1] by |2]"

= 2(1 - Q)|zl{1 - X SR [B(n — (A — 8) + 1]™ay ||z

= Y EER B — D - 6) + 1]™|by||2]" 7}

> 2(1 - @)|zl{1 - Tiz, SR B — DA 8) + 1]™|ay|

—¥e, M R — 1)(A = 6) + 1]™|by}

1-a

> 2(1 - a){1 - iy SR B = DA = 8) + 1™y

1—

— T SRR = D= 6) + 1™ byl} 2 0,

1_
By (2.3), the proof is complete.
Next, the necessity of condition (2.3) for functions in 7SX(m, 8, B, A, @), is established.

Theorem 2.3 Let h and g are given by (1.13), f = h + g and f, = h, + g, with hy, and g, are given by (1.14).
Then f € TSE(m, 6,8,A, @) < (2.3) holds.

Proof. The if part follows from Theorem 2.2 noting that if the analytic and co-analytic partsof f = h +g €
Sk(m, 8, B, A, @) are of the form (1.13) then f € TSf(m, 8, B, A, a). For the only if part, we show that f ¢
TSk(m, 8, B, A, a) if the condition (2.3) does not hold. Note that a necessary and sufficient condition for f =
h + g given by (1.13) to be in Sk (m, §, B, A, @), is that

2(Dp (D) —2(DFp 9 D)1 a

DIy i (2)+D T 9k (2)

Re{
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This is equivalent to

z(ﬂgﬁ’Ah(z))l—W ~

a=0.
ﬂggﬂqhk(z)*'@g}p,,{gk(z)

Re{

( (A -a)z=-¥p, (n—a®)[(n = DA =8) + 1]"|ay|z"
z—=Yn= [Bn = DA =8) + 1]™ Dylan|z™ + Xy [B(n — DA = 6) + 1]™ @y |by|2"

ne1 M+ ad®)[f(n —1)(A = 6) + 1]™|by,|2" )
z— 21010=2 [ﬂ(n - 1)(7\ - 6) + 1]m q)nlanlzn + Zz)=1 [ﬁ(n - 1)0\_ 5) + 1]m cI)nlbnlzn

(A -z -¥p, (n—a®)[B(n - DA =8) + 1]"|a,|z"
2= 3 B = DA = 8) + 1™ Dylay|z™ + Ti, [B(n— DA = 8) + 1™ @, |by|2z"

<|

B Yot (n+ a®)[B(n — DA = 8) + 1]™|by|2" |
z2= 30, B = DA = 8) + 1™ Dylay|z™ + T5-, [B(n— DA = 8) + 1™ @, |by|2"

Suppose that condition (2.3) is not satisfied, then

LA -0 - Qame (0~ a®p)lan| + Xnzy (04 a®y) b DI — DA - 8) +1]™
B 1= &nzz Pulan] = X0sy Pulbp DB — DA —6) +1]™ '

that is,
(1—a) = Xr= (n —ady)|ay| +X52; (n+a®y)[b,N[F(n — DA -8) +1]" < 0.
Hence f & T7SK(m, 8, B, A, «). Thus, the proof is concluded.
The following theorem presents the growth result.
Theorem 2.4 If f € TSE(m, 8,8, 2, ), then

F I < @+ by Dr + o G = o by, 2l =7 <1,

BO—8)+1]™ (E T 2a

1 1- 1+
F@1= A =1 Dr = g e oIt lzl=r <1

Proof. it suffices to prove the second inequality, as the first can be shown by a similar argument. Let f €
TSk(m, 8, B, A, ). Taking the modulus of £(z) we obtain

If (@] = (1 = |bi)r = X5z [lan| + 1ba]]r™

> (1= b Dr — X2, [lag] + [ballr?

> (1= |biDr ~ G See ez lanl + ballB = 8) + 117

> (1= 17— iy Sz (e lanl + 552 bal ) BO = 8) + 1172
> (1= 107 = Gromocsmgn (1~ 1D by(23)

= (1= b = sy Goa ~ 2o 11D

[BAA=8)+1]™ 2—a 2-a

The following covering result is derived from the second inequality in Theorem 2.4.
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Corollary 2.5 If f € TSk(m, 8, 8,2, ) then

(1-a) (1+a)

<1 = gasmrm ~ (1~ erapa-gap 1B € 7O

The convex case

The method for proving the following theorems in the convex case mirrors that of Theorems 2.1, 2.2 and 2.3 for
the starlike case, substituting Theorem 1.2 for Theorem 1.1.

Theorem 3.1 For f € C(m, 5, B,A, a) where f = h + g with h and g are represented by (1.1), then f,(z) =
hy + gx with b, and g, are defined by (1.11) is in CX(m, 6, B, 2, @).

Theorem3.2 For f = h 4+ g where h and g are defined by (1.1) and f,, = hy + g, hy, and g, are represented
by (1.12). If

(o] - ch ch
Ty Mg, + M2 b B (- D - 6) + 1] < 2,

whereg;, =®;, =1, 0<a<1,8§=20, >0, A>0, § # A, m € Ny and &, given by (1.9). Hence fis
harmonic univalent function and sense-preserving in the open unit disk and f € CX(m, 8, 8,2, a).

Theorem 3.3 For f = h 4+ g with h and g are given by (1.13) and f; = hy + g, with h, and g, are expressed
asin (1.14). Then f in TCE(m,8,8,1, a) =

o (n—adn) (n+adn)
e i ] + s bl [B( = DA = 8) + 1™ < 2,
wherea; =®;, =1, 0<a<1,6§=0, >0, A>0, § #A,m € Ny and ®,, given by (1.9).
Remark 2.1. related contributions on harmonic functions are reported in [5, 8, /1].

Conclusion

In the present work, we introduce and study new subclasses of harmonic univalent functions that are k-symmetric
starlike and convex which defined by a derivative operator and investigate some of their geometric properties.
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