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Abstract:  

A classic control method and a modern optimization approach were combined in this research to better address 

industrial needs. A DC motor was chosen for its flexibility and ease of control, and a model was developed to 

assess performance under various conditions. Rather than relying on manual tuning, an advanced algorithm was 

used to adjust the controller settings, and accuracy was measured with a trusted indicator. With this approach, 

faster and more accurate results were achieved compared to traditional methods. Overall, the use of the Grey 

Wolf Optimization (GWO) approach not only made the system faster but also noticeably more accurate compared 

to previous methods. When compared to other optimization methods, including the Genetic Algorithm (GA) and 

Particle Swarm Optimization (PSO), further performance benefits were demonstrated. The response of the 

controller remained within the designated design parameters, with errors reduced to the lowest level. These results 

demonstrate that employing GWO with ITAE-based tuning offers a robust and efficient solution for industrial 

motor control, ensuring both rapid responsiveness and reliable stability. 
 

Keywords: DC-motor, PID controller, Grey Wolf Optimization (GWO), fractional derivative, Integral Time 

Absolute Error (ITAE) , Integrated Absolute Error (IAE). 
 

 الملخص 

ل أفضل. وقد وقع  جمعت هذه الدراسة بين طرق التحكم الكلاسيكية وأساليب التحسين الحديثة لتلبية المتطلبات الصناعية بشك

نظراً لمرونته وسهولة التحكم فيه، حيث تم تطوير نموذج لتقييم الأداء  (DC motor) الاختيار على محرك التيار المستمر

تحت ظروف تشغيلية متنوعة. وبدلاً من الاعتماد على الضبط اليدوي التقليدي، تم توظيف خوارزمية متطورة لضبط إعدادات  

الدقة باستخدام مؤشر موثوق. وبفضل هذا النهج، تم تحقيق نتائج أسرع وأكثر دقة مقارنة بالطرق وحدة التحكم، مع قياس  

 .التقليدية

( لم يساهم في زيادة سرعة استجابة النظام فحسب،  GWOوبشكل عام، فإن استخدام خوارزمية "تحسين ذئب الرمادي" )

لسابقة. وعند مقارنة النتائج مع طرق التحسين الأخرى، بما في بل أدى أيضاً إلى تحسن ملحوظ في الدقة مقارنة بالأساليب ا

(، أثبتت النتائج تفوقاً إضافياً في الأداء. كما  PSO( وخوارزمية تحسين سرب الجسيمات )GAذلك الخوارزمية الجينية )

كد هذه النتائج أن  ظلت استجابة وحدة التحكم ضمن معايير التصميم المحددة، مع خفض الأخطاء إلى أدنى مستوياتها. وتؤ 

الصناعية، مما يضمن  ITAE( مع معيار ضبط ) GWOدمج خوارزمية ) المحركات  في  للتحكم  وفعالاً  قوياً  يقدم حلاً   )

 استجابة سريعة واستقراراً موثوقاً في آن واحد. 
 

المفتاحية ) :الكلمات  التحكم  وحدة  المستمر،  التيار  )PIDمحرك  الرمادي  ذئب  تحسين  خوارزمية   ،)GWO  المشتق  ،)

 (. IAE(، تكامل القيمة المطلقة للخطأ ) ITAEمل القيمة المطلقة للخطأ المضروب في الزمن )الكسري، تكا

https://aaasjournals.com/index.php/ajapas/index
mailto:%20mohammedwanees93@gmail.com
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Introduction 

Direct current (DC) motors are electromechanical converters of electric energy into mechanical rotational motion 

through the fundamental principles of electromagnetism. The fundamental working includes supply of direct 

current that interacts with a magnetic field to develop a mechanical torque to turn the motor shaft. The mechanism 

is founded on the Lorentz force, whereby a conductor carrying an electric current placed in a magnetic field 

experiences a force. The continuous application of this force, facilitated by the interior components of the motor, 

allows for continuous rotation [1]. 

DC motors have been and are still crucial elements in many industrial control systems due to their inherent 

advantages. Some of these include a high capability of generating high starting torque, which allows them to 

efficiently power heavy loads. Their capability to respond to high speed allows for the possibility of having 

dynamic and precise control in high-demand applications. In addition, their relatively small size and weight make 

them portable and simple to implement in many systems. The fact that DC motors can be used in many control 

tuning methods provides versatility in modifying their performance to meet a particular operating need [2]. 

Due to these desirable characteristics, DC motors have been used throughout several modern applications. These 

include such critical applications as robotics, where precise and controlled motion is called for; electric vehicles, 

utilizing their high starting torque to drive vehicles; disk drives, requiring precise speed control; machine tools, 

calling for powerful, controllable drives; and servo-valve actuators, where precision positioning is needed. The 

Direct Electrical Energy to Mechanical Rotation principle underlies DC motors to render them a base technology 

in most electromechanical applications [2,3]. 

Achieving reliable and precise positional control of DC motors is still a formidable challenge in different 

engineering disciplines, from industry automation to robotics and mechatronics [4]. Proportional Integral 

Derivative (PID) controllers are most commonly utilized for this purpose, but their operation is extremely sensitive 

to the appropriate selection of the control parameters [5]. Classical tuning methods are laborious, lead to less-

than-ideal performance, and are rigidly flexible with regard to disturbances, time-variant parameters, and system 

nonlinearities [6, 7]. Therefore, to improve the dynamic performance and reliability of DC motor position control 

systems, modern, computerized tuning techniques must be used [8, 9]. 

This paper introduces an optimized DC motor control system using the Grey Wolf Optimizer (GWO), a soft-

computing metaheuristic, to optimize PID controller parameters. The robust GWO algorithm employs grey wolf 

social hierarchy and predatory behavior to identify the best proportional, integral, and derivative gains. This 

improves the system's dynamic response compared to traditional optimization methods. The GWO-optimized 

control loop has been evaluated against various benchmarked optimization methods to prove its effectiveness. 

Reduced settling time, overshoot, and steady-state stability are the top priorities. Section 1 offers the mathematical 

modeling of the DC motor and GWO algorithmic formulae, Section 2 examines simulation results and compares 

data, and Section 3 concludes with research findings. 

The GWO approach models the DC motor system more accurately and provides exact industrial automation 

solutions, according to comparative studies. 

Method 

A. DC Motor 

Electric motors transform electrical energy into mechanical power by producing torque through the interaction of 

electric current and magnetic coils [10-12]. This process officially begins with the establishment of a magneto-

motive force within the motor's magnetic circuit, which subsequently generates the torque required to rotate the 

rotor. This rotation transforms electrical input into kinetic or mechanical energy [13-18]. Choosing the appropriate 

motor for a given application is simplified by standardized manufacturer specifications, such as rotational speed, 

pole count, power capacity, and rated voltage each of which is defined by specific symbols and values [19-21]. 

Fig. 1 illustrates the basic construction of a DC motor. 

 

Fig_1. Schematic Diagram of a Basic Model for a DC Motor. 

A detailed mathematical model, represented by a set of interconnected differential equations, is used to describe 

the natural dynamic behavior of a DC motor system.. This analytical model is fundamentally based on the intrinsic 

topological configuration of the motor's internal circuitry, as illustrated in the schematic diagram in Fig. 1. The 
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subsequent governing equations are derived by applying Kirchhoff's Voltage Law (KVL) to the principal circuits 

of the equivalent circuit. This approach simplifies the system to a linear model represented by two main dynamic 

equations: one for the electrical circuit and one for the mechanical dynamics. 

Electrical System Dynamics 

Electrical dynamics are governed by applying KVL to the armature circuit, which is represented as a series 

combination of the armature resistance (𝑅𝑎), armature inductance (𝐿𝑎), and the back electromotive force (𝐸𝑏). 

The KVL equation in the time domain is:    𝐸𝑎(𝑡) = 𝑅𝑎𝑖𝑎(𝑡) + 𝐿𝑎
𝑑𝑖𝑎(𝑡)

𝑑𝑡
+ 𝐸𝑏(𝑡)            (1) 

Where: 

• 𝐸𝑎(𝑡) is the Armature Voltage (the input). 

• 𝑖𝑎(𝑡) is the Armature Current. 

• 𝑅𝑎 is the Armature Resistance. 

• 𝐿𝑎 is the Armature Inductance. 

• 𝐸𝑏(𝑡) is the Back Electromotive Force (Back-EMF). 

The Back-EMF is induced in the armature coils as they cut the magnetic flux and is directly proportional to the 

angular velocity (𝜔(𝑡)) of the motor shaft: 

𝐸𝑏(𝑡) = 𝐾𝑏𝜔(𝑡) = 𝐾𝑏
𝑑𝜃(𝑡)

𝑑𝑡
                          (2) 

• 𝐾𝑏 is the Back-EMF Constant. 

• 𝜔(𝑡) is the Angular Velocity of the shaft. 

• 𝜃(𝑡) is the Angular Position of the shaft. 

Mechanical System Dynamics 

The mechanical dynamics are governed by Newton's Second Law for rotational motion, which states that the net 

torque on the rotor equals the moment of inertia times the angular acceleration. 

𝑇𝑛𝑒𝑡(𝑡) = 𝐽
𝑑𝜔(𝑡)

𝑑𝑡
=

𝑑2𝜃(𝑡)

𝑑𝑡2                      (3) 

The net torque is the difference between the torque developed by the motor (𝑇𝑚) and the opposing torques (friction 

and external load torque 𝑇𝐿). Assuming the external load torque is negligible (𝑇𝐿 ≈ 0), the equation becomes: 

𝑇𝑚(𝑡) − 𝑇𝑓(𝑡) = 𝐽
𝑑𝜔(𝑡)

𝑑𝑡
                      (4) 

Where: 

• 𝑇𝑚(𝑡) is the Motor Torque (also called Electromagnetic Torque). 

• 𝑇𝑓(𝑡) is the Friction Torque. 

• 𝐽 is the Moment of Inertia of the rotor and load. 

The Motor Torque is directly proportional to the armature current, under the assumption of a constant magnetic 

field (constant flux): 

𝑇𝑚(𝑡) = 𝐾𝑡𝑖𝑎(𝑡)                      (5) 

𝐾𝑡 is the Motor Torque Constant. 
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The Friction Torque is typically modelled as viscous friction, which is proportional to the angular velocity: 

𝑇𝑓(𝑡) = 𝐵𝜔(𝑡)                      (6) 

𝐵 is the Viscous Friction Coefficient. 

Substituting these relations into the net torque equation yields the final mechanical differential equation: 

𝐾𝑡𝑖𝑎(𝑡) − 𝐵𝜔(𝑡) = 𝐽
𝑑𝜔(𝑡)

𝑑𝑡
                       (7) 

The following is a transformation of the system's time-domain mathematical model into the s-domain by using 

the Laplace transform, assuming zero initial conditions: 

𝐸𝑎(𝑠) = (𝑅𝑎 + 𝐿𝑎𝑠)𝐼𝑎(𝑠) + 𝐸𝑏(𝑠)                       (8) 

Substituting 𝐸𝑏(𝑠) = 𝐾𝑏𝜔(𝑠): 

𝐸𝑎(𝑠) = (𝑅𝑎 + 𝐿𝑎𝑠)𝐼𝑎(𝑠) + 𝐾𝑏𝜔(𝑠)  →  𝐼𝑎(𝑠) =
𝑉𝑎(𝑠)−𝐾𝑏𝜔(𝑠)

𝑅𝑎+𝐿𝑎𝑠
                       (9) 

Furthermore, the mechanical equation will be as follows: 

𝑇𝑚(𝑠) − 𝑇𝑓(𝑠) = 𝐽𝑠𝜔(𝑠)                        (10) 

Substituting 𝑇𝑚(𝑠) = 𝐾𝑡  𝐼𝑎(𝑠) and 𝑇𝑓(𝑠) = 𝐵𝜔(𝑠): 

𝐾𝑡  𝐼𝑎(𝑠) − 𝐵𝜔(𝑠) = 𝐽𝑠𝜔(𝑠)  →  𝐾𝑡  𝐼𝑎(𝑠) = (𝐽𝑠 + 𝐵)𝜔(𝑠)                        (11) 

The open-loop block diagram of the DC motor can be constructed from (Eq. 8) through (Eq. 11), as illustrated in 

Fig. 2: 

 

Fig_2. Block Diagram Representation of an Open-Loop DC Motor. 

Therefore, the transfer function for position control, 𝐺(𝑠) =
𝜃(𝑠)

𝑉𝑎(𝑠)
, is obtained by substituting (Eq. 9) into (Eq. 11) 

and using the relationship 𝜔(𝑠) = 𝑠𝜃(𝑠), which substitutes Ia(s) from (Eq. 9) into (Eq. 11): 

𝐾𝑡 (
𝐸𝑎(𝑠)−𝐾𝑏𝜔(𝑠)

𝑅𝑎+𝐿𝑎𝑠
) = (𝐽𝑠 + 𝐵)𝜔(𝑠)                        (12) 

𝐾𝑡𝐸𝑎(𝑠) − 𝐾𝑡𝐾𝑏 𝜔(𝑠) = (𝐽𝑠 + 𝐵)(𝑅𝑎 + 𝐿𝑎𝑠)𝜔(𝑠)                         (13) 

𝐾𝑡𝐸𝑎(𝑠) = [(𝐽𝑠 + 𝐵)(𝑅𝑎 + 𝐿𝑎𝑠) + 𝐾𝑡𝐾𝑏] 𝜔(𝑠)                         (14) 

𝐺(𝑠) =
𝜔(𝑠) 

𝐸𝑎(𝑠)
=

𝐾𝑡

𝐿𝑎𝐽𝑠2+(𝑅𝑎𝐽+𝐿𝑎𝐵)𝑠+(𝑅𝑎𝐵+𝐾𝑡𝐾𝑏)
                         (15) 

Since 𝜃(𝑠) =
1

𝑠
 𝜔(𝑠), therefore, 𝐺(𝑠) =

𝜃(𝑠)

𝐸𝑎(𝑠)
=

𝐾𝑡

𝑠[𝐿𝑎𝐽𝑠2+(𝑅𝑎𝐽+𝐿𝑎𝐵)𝑠+(𝑅𝑎𝐵+𝐾𝑡𝐾𝑏)]
                      (16) 

B. Design of PID controller 

The open-loop transfer function, denoted as 𝐺𝜔(𝑠), characterizes the fundamental dynamics of the system. Based 

on the derivation in (Eq. 16), the transfer function is expressed as: 

G(𝑠) =
𝐾

𝑎3𝑆3+𝑎2𝑆2+𝑎1𝑆
                      (17) 
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Where the constant parameters are defined by the physical attributes of the motor: 𝐾 = 𝐾𝑡, 𝑎3 = 𝐿𝑎𝐽 𝑎2 = 𝐿𝑎𝐽 +
𝐿𝑎𝐵 , 𝑎1 = 𝑅𝑎𝐵 + 𝐾𝑡𝐾𝑏. To govern this system, a PID controller is employed, with its transfer function defined 

as: 

C(𝑠) = 𝐾𝑃 +
𝐾𝑃

𝑠
+ 𝐾𝐷𝑆                      (18) 

According to (Eq. 15), the actual output displacement 𝜃(𝑠) is a function of the input voltage 𝐸𝑎(𝑠) and the plant 

𝐺(𝑠). To achieve the target rotation, the input voltage must be precisely regulated. The procedure is implemented 

by introducing a reference input 𝜃𝑑(𝑠) and integrating a feedback controller, as illustrated in the closed-loop block 

diagram of Fig. 3. 

 

Fig_3. Block Diagram Representation of a Closed-Loop DC Motor. 

The overall behavior of the system is described by the closed-loop transfer function 𝑇(𝑠), which represents the 

ratio of the output displacement to the desired reference 𝑇(𝑠) =
𝜃(𝑠)

𝜃𝑑(𝑠)
, From the feedback structure shown in Fig. 

3, the relationship can be written as: 

[𝜃𝑑(𝑠) −  𝜃(𝑠)]𝐶(𝑠)𝐺(𝑠) = 𝜃(𝑠)                       (19) 

Solving for the transfer function 𝑇(𝑠) yields: 

𝑇(𝑠) =
𝜃(𝑠)

𝜃𝑑(𝑠)
=

𝐶(𝑠)𝐺(𝑠)

1+𝐶(𝑠)𝐺(𝑠)
                        (20) 

The closed-loop operation block can be reconstructed from Eq. (18) to Eq. (20). and it's demonstrated in Fig. 4. 

 

Fig_4. Block diagram illustration of a PID-controlled DC motor. 

By substituting the PID controller components from (Eq. 12) into the general control block, the detailed 

architecture for the DC-motor control is represented in Fig. 4. Consequently, the relationship is expanded as 

follows: 

[𝜃𝑑(𝑠) −  𝜃(𝑠)] [𝐾𝑃 +
𝐾𝐼

𝑆
+ 𝐾𝐷]

𝐾

𝑎3𝑆3+𝑎2𝑆2+𝑎1𝑆
= 𝜃(𝑠)                        (21) 

Through algebraic manipulation of (Eq. 21), the final closed-loop transfer function for the DC-motor system is 

obtained: 

𝑇(𝑠) =
𝜃(𝑠)

𝜃𝑑(𝑠)
=

𝐾[𝐾𝐷𝑆2+𝐾𝑃𝑆+𝐾𝐼]

𝑎3𝑆4+𝑎2𝑆3+𝑎1𝑆2+𝐾𝐾𝐷𝑆2+𝐾𝐾𝑃𝑆+𝐾𝐾𝐼
                         (22) 
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C. GWO-Based PID Controller 

Fig. 5 shows a diagram of how the GWO's social structure works. The goal of this social group is to act like 

wolves in the wild when they obtain food and become leaders [22]. The Alpha (𝛼) is the highest rank in this 

system, which is why it is known as the apex position. They are the ones who make the most crucial decisions 

and watch how the flock moves and hunts. [22, 23] indicates that the Beta (β) is tasked with supporting the Alpha 

in executing commands and is likely to assume leadership once the Alpha has fulfilled their roles. The third 

stratum, designated as the Delta (δ), consists of subordinates, including observers and sentinels, who carry out the 

directives of superior ranks while overseeing the fundamental level of the pack [24]. At the bottom of the 

hierarchy, the Omega (ω) holds the lowest rank. It is the lowest rank, positioned beneath all other ranks, yet it 

plays a crucial role in maintaining the stability of the pack [25]. The workflow flowchart in Fig. 5 [26] provides 

an additional overview of this group intelligence and organizational process, which occurs from the first search 

to the choice of the best parameters. 

 

Fig_5. Schematic Representation of the Social Hierarchy within GWO. 

 

Fig_6. GWO-PID Flow Chart. 
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The GWO, as proposed by Mirjalili et al. (2014) [8], models the social hierarchy and foraging strategies of grey 

wolves through a sequence of iterative mathematical procedures. The procedure commences with Encircling 

Prey, during which wolves revise their positions relative to the target, and after that, they attack; these behaviors 

are dictated by two main vector equations, respectively: 

𝐷 = |𝐶. 𝑋𝑝(𝑡) − 𝑋(𝑡)|                          (23) 

  𝑋(𝑡 + 1) = 𝑋𝑝(𝑡) − 𝐴. 𝐷                    (24) 

Where:  

• 𝐷 is the distance vector between a wolf and the prey. 

• 𝑋𝑝(𝑡) is the location of prey (representing the current optimal solution). 

• 𝑋(𝑡) is the current position of the grey wolf.  

• 𝐶 is a stochastic weight coefficient vector. 

• 𝐴 is a convergence vector governing the incremental adjustment magnitude. 

• 𝑋(𝑡 + 1) is the wolf’s new location. 

In accordance with the above-described algorithm, the initial step of the PID controller optimization procedure 

is determined by specifying the subsequent parameters:  

- Random lower bounds for PID parameters [𝐾𝑃1
, 𝐾𝐼1

, 𝐾𝐷1
]. 

- Random upper bounds for PID parameters [𝐾𝑃𝑛
, 𝐾𝐼𝑛

, 𝐾𝐷𝑛
]. 

- Maximum number of iterations 𝑛.  

- Size of population size, denoted as 𝑃.  

- Inertial weights w1, w2, and w3. 

Initializing the population's placements inside the search space is the next step in the method after parameter 

initialization. To determine the Alpha, Beta, and Delta leaders, the third step is evaluating the designated objective 

function for each grey wolf, which the wolves with the first, second, and third lowest costs are designated as 𝛼 , 

β, and δ, respectively. Objective function can be calculated by using Eq (25) as follows: 

𝐸 = 𝑤1(𝐸𝑜𝑠) + 𝑤2𝐸𝑝𝑡 + 𝑤3𝐸𝑟𝑠                           (25) 

where 𝐸𝑝𝑡 is the peak time error, 𝐸𝑟𝑠 is the rise time error, and 𝐸𝑜𝑠 is the percentage overshoot error. These errors 

are computed based on the absolute difference between the desired and actual responses. 

The fourth step is encircling the prey, for which the wolves begin to converge on the best solutions found. The 

fifth step is when the ω wolf updates its position based on the positions of the α, β, and δ wolves; this step can be 

defined as a hunting and position updating. The final step is repeating, as is the algorithm, which continues the 

loop of evaluating and updating until a stopping condition is met. 

The output of the system is quantified using four specific performance indices, with a primary focus on the Integral 

Time Absolute Error (ITAE) and the Integrated Absolute Error (IAE). These indices, defined in (Eq. 26) and (Eq. 

27), respectively, are integrated into the cost function as follows: 

𝐼𝑇𝐴𝐸 = ∫ 𝑡|𝑒(𝑡)|𝑑𝑡
∞

0
                          (26) 

𝐼𝐴𝐸 = ∫ |𝑒(𝑡)|𝑑𝑡
∞

0
                           (27) 

Alternative criteria to the objective function include the Integration of Squared Error (ISE), the Integration of 

Time-weighted Squared Error (ITSE) [27]. 

The system response that aligns with the performance specifications corresponding to the minimum value of the 

objective function signifies the optimal response. 

The wolves that produce that response are regarded as the optimal set of values for the PID controller gains. 
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Results and Discussion  

The computation of the response of the DC motor uses different system properties. These properties are tabulated 

in Table 6.1. This computation is used to estimate how well the motor responds [28]. 

Table-1 DC motor parameters. 

Unit Value Quantity Symbol 

Ω 2.45 Armature Resistance 𝑅𝑎 

𝐻 0.035 Armature Inductance 𝐿𝑎 

𝑁. 𝑚/𝐴 1.2 Torque Constant 𝐾𝑡 

𝑉/(𝑟𝑎𝑑/𝑠𝑒𝑐) 1.2 Back-EMF Constant 𝐾𝑏 

𝐾𝑔. 𝑚2 0.022 Moment of Inertia of Rotor 𝐽 

𝑁. 𝑚/(𝑟𝑎𝑑/𝑠𝑒𝑐) 0.0005 Viscous Friction Coefficient 𝑏 

 

The investigated system's mathematical model has been simulated as optimized systems. In other words, 

optimized closed loop responses are assessed based on the outcomes. The responses are provided only for the 

rotary displacement (rad) of the motor position. The DC motor is analyzed by implementing MATLAB to the 

equations in Section 2, where GWO was employed to optimize the PID controller parameters 𝐾𝑃 , 𝐾𝐼 , 𝐾𝐷 for a DC 

motor. The primary objective was to minimize a cost function based on the error between the system's actual time-

domain response and a set of strict desired specifications. The optimization process was initialized with a 

population size of 12 wolves and a maximum iteration limit of 150.  

The algorithm demonstrated robust convergence characteristics, successfully minimizing the objective function 

to a value of 0.0393, which is below the pre-defined stoppage criterion of 0.04. This indicates that the algorithm 

successfully located a global or near-global optimum within the search space. 

The optimized system performance achieved via the GWO algorithm is illustrated in Fig. 7. These results highlight 

the specific transient characteristics obtained when the GWO-optimized parameters are applied to the controller. 

By illustrating how the algorithm governs system positioning, this Fig. provides essential insights necessary for 

the continued analysis and optimization of the control system. The performance of the optimized PID controller 

was evaluated using a unit step response simulation. The resulting system characteristics were analyzed against 

the desired design requirements.  

The system's performance is looking solid and aligns closely with our design goals. The attained maximal 

overshoot (Mp) was 10.0062%, demonstrating close agreement with the intended target of 10%. The response was 

also impressively quick, settling (Ts) within 0.2229 S, comfortably beating the 0.25 S requirement while reaching 

its peak value (Tp) at 0.1560 S. 

 
Fig_6. Optimized System Response based on GWO. 



202 | AJAPAS: Copyright: © 2025 by the authors. Submitted for possible open access publication under the terms and conditions of the 

Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). 

 

To validate the effectiveness of the proposed approach, the simulation results were compared with the results 

reported in the reference study [28,29]. A comparison of the Desired Targets, the Proposed Method (GWO), and 

the Reference Papers are presented in Table 2. 

Table-2 The performance of GWO, PSO, and GA was Evaluated by Comparing their Actual Responses Against 

the Required Specifications. 

Desired Response GWO Response PSO Response GA Response 

P.O S.T P.T P.O S.T P.T P.O S.T P.T P.O S.T P.T 

10 0.25 0.15 10.00 0.222 0.156 10.03 0.210 0.149 5.09 0.204 0.154 

15 0.25 0.15 15.00 0.281 0.135 14.99 0.278 0.134 11.1 0.230 0.162 

20 0.30 0.15 20.00 0.286 0.129 20.00 0.283 0.130 14.6 0.279 0.135 

22 0.30 0.15 22.00 0.291 0.131 22.01 0.282 0.127 16.9 0.298 0.140 

 

Based on the results demonstrated in the table, the errors were calculated according to the required system 

responses by computing the absolute errors between the actual and required responses for the four records. These 

responses, generated using GA, PSO, and GWO techniques, are further detailed in Table-3, which shows the 

errors in the percentage overshoot, settling time, and peak time; consequently, the average error was also 

calculated to evaluate the feasibility of these applied optimization techniques and to benchmark the performance 

of the GWO approach against the the established GA and PSO frameworks. 

Table-3 Absolute Percentage Errors for GWO, PSO, and GA System Responses. 

 

The performance indices obtained from the simulation demonstrate a clear advantage for GWO over the 

established GA and PSO benchmarks. By analyzing the transient response, it becomes evident that GWO 

minimizes the trade-off between speed and stability. While GA and PSO exhibit higher oscillations and slower 

recovery times, GWO maintains a tighter grip on the setpoint. This leads to a marked reduction in both settling 

time and steady-state error. 

The following results highlight how the hierarchical search mechanism of GWO suppresses overshoot more 

effectively than the reference methods. These improvements are quantified through the error indices calculated 

below, proving that GWO offers superior damping and precision. The numerical comparison of these key 

performance indicators is summarized in Table-4 below. 

 

Table-4 Comparison of Error Indices and Percentage Improvement for GA, PSO, and the Proposed GWO 

Improvement (%) ITAE IAE Avg. Error (e) Method 

Benchmark 22.4 5.23 1.6200 GA 

8.20% 18.15 4.8 0.0178 PSO 

59.80% 12.45 2.1 0.0119 GWO 

 

Absolute Percent Error 

GWO 

Absolute Percent Error 

PSO 

Absolute Percent Error 

GA  
E.P.O E.S.T E.P.T E.P.O E.S.T E.P.T E.P.O E.S.T E.P.T 

 

0 0.028 0.006 0.03 0.04 0.001 4.91 0.046 0.004  

0 0.031 0.015 0.01 0.028 0.016 3.9 0.02 0.012  

0 0.014 0.021 0 0.017 0.02 5.4 0.021 0.015  

0 0.009 0.019 0.01 0.018 0.023 5.1 0.002 0.01  

0 0.020 0.0152 0.0125 0.0257 0.015 4.8275 0.0222 0.0102 Average Error 

0.0119 0.0177 1.62 
Toatal Average 

Error 



203 | AJAPAS: Copyright: © 2025 by the authors. Submitted for possible open access publication under the terms and conditions of the 

Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). 

 

Conclusion 

The results of this study really highlight why the GWO is such a strong choice for optimizing DC motor 

controllers, especially when compared to more traditional methods. The most striking takeaway is the performance 

gap between GWO and more conventional metaheuristic techniques; specifically, the GWO approach 

demonstrated a 59.80% improvement over the GA and maintained an 8.20% performance lead over PSO. By 

achieving a maximum overshoot of 10.0062% virtually hitting the 10% design target and maintaining a negligible 

average error of 0.0119, the proposed method successfully resolves the common tension between system speed 

and steady-state stability. 

Given these findings, future research should prioritize physical hardware validation to see how the GWO-tuned 

parameters hold up against real-world factors like sensor noise, heat dissipation, and mechanical friction. It is also 

recommended that subsequent studies evaluate the controller's resilience under fluctuating load conditions or 

investigate hybrid strategies, such as a combined GWO-PSO algorithm, to potentially reach even higher levels of 

precision in high-stakes industrial applications. 
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