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Abstract:  

Recently, machine learning (ML) methods are growing as one of the most powerful techniques in scientific 

research and technological applications. Herein, artificial neural networks (ANNs) as novel predictive ML 

techniques were built to predict the optical band gap energy of undoped ZnO thin films. The proposed 

multilayer perceptron neural network methods include the scaled conjugate gradient (SCG) and the gradient 

descent (GD) with momentum and learning rate optimization coefficients. 

The two suggested techniques were trained, tested, and validated with empirical data sets, by selecting the 

temperature of the substrate and the precursor molarity of ZnO solution as input parameters as well as the band 

gap energy as a response parameter. Furthermore, the simulated findings of ANN models were compared to the 

multiple linear regression (MLR) model and then the fitness and accuracy of those models were evaluated by 

different statistical metrics including the root mean square error (RMSE), the mean absolute percentage error 

(MAPE), and regression coefficients. Based on the results, SCG-ANN and GD-ANN models show high 

prediction accuracy with RMSE of 0.055 and 0.064 for testing data, respectively, whilst MLR analysis showed 

poor prediction accuracy with RMSE of 0.080 and R2 of 0.063. Additionally, the simulated output of these 

proposed ANNs models is in good agreement with the empirical datasets, which indicates high performance of 

SCG-ANN and GD-ANN models than the MLR model. 
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Introduction 

Recently, zinc oxide (ZnO) nanostructures have gained great attraction as a superior material for developing 

high performing ZnO-based devices and applications. However, it is challenging to characterize the synthesis 

process of ZnO thin films due to the nonlinearity nature and unpredictability changes during the fabrication 

process. Hence, for highly efficient optical devices the correlations among the different input and output 

parameters of the synthesis process have to be investigated statistically. Therefore, generating a sophisticated 

mathematical model which forecasts and optimizes the nonlinear features of those nanostructures can 

significantly improve their performance. In material science, the luminescence yield of direct band gap materials 

is higher than those of indirect band gap materials which means the direct wide band gap energy lowers the 

leakage current of the systems and their temperature-dependent properties [1]. ZnO has a direct large band gap 

energy (3.40 eV) at room temperature that makes it transparent in the visible light region and highly photoactive 

in the UV region. Furthermore, ZnO has Higher exciton binding energy (∼60 m eV) which can increase its 

https://aaasjournals.com/index.php/ajapas/index
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photo-activity and make it an attractive material for short wavelength optoelectronic devices [2]. In addition, the 

high exciton binding energy in ZnO materials can enhance (UV) luminescence (∼380 nm) at room temperature 

[3]. Based on the photoluminescence (PL) spectroscopy of ZnO nanorods, it was observed that the quantum 

confinement effect is generally related to the small sizes of ZnO grains and can result in increasing the band gap 

energy and exciton binding energy [4]. A strong luminescence peak at 380 nm was attributed to band-to-band 

transitions and green-yellow emission was observed due to oxygen vacancy. Another red emission peak was 

also reported, which is explained as transitions caused by a doubly ionized oxygen vacancy [5]. Further, as ZnO 

nanowire/nanorod has a nearly cylindrical shape and large refractive index (∼2.0), therefore, it is an attractive 

material for optical waveguides [6].  

 

In data science, ML is a branch of artificial intelligence applications, where ML algorithms inspire or simulate 

to mimic the human brain.  Those ML algorithms are considered as a powerful informatic method to process 

data, which is mostly available through previously published reviews, for learning and predicting the desired 

results. Hence, ML can significantly speed up the manufacturing process of nanostructures-based devices and 

applications without employing multiple repeated estimations [7]. One of the most used ML methods is ANNs 

which is applied for forecasting different material properties and producing the optimum parameters of the 

manufacturing process. 

ANN was combined with an adaptive network-based fuzzy inference system (ANFIS) to predict the 

antibacterial growth of knitted fabrics. Based on the findings, high performance with good efficiency was 

verified for both models [8]. Another study developed ANN and golden eagle optimizer (GEO) to assess the 

comfort characteristics of zinc oxide nanoparticles (ZnO NPs) coated woven fabrics. It found that the ANN-

GEO model offers better accuracy compared to the standard ANN model [9]. In addition, the tensile strength of 

wool fibres was predicted by employing ANN with multiple linear regression, according to the results, the ANN 

approach was more efficient and accurate than multiple linear regression [10]. In another work, ANN, and   

Kernel Ridge Regression (KRR) were used to forecast the band gap energy of ZnO quantum dots. The models 

result showed significant accuracy and good performance [11]. Further, The Levenberg-Marquardt (LM) 

algorithm of ANN was employed to forecast the crystallite size and band gap energy of ZnO quantum dots. 

According to the results, the model had a high prediction accuracy [12]. 

In the current study, the aim is to apply different predictive algorithms, namely, SCG-ANN, GD-ANN, and 

MLR model to predict the band gap energy of undoped ZnO thin films. Moreover, the efficiency and accuracy 

of those models were validated as an anticipation technique through analytical methodology, and the 

relationship between the input variables and the response factor was proved. 

 

ANNs modelling methodology 

Herein, an applied strategy is to identify the best anticipating algorithms which can produce the most optimum 

output response through several groups of input factors. The basic principles of ANN are to imitate the nature 

and performance of the biological neurons of the human brain that enable those artificial networks to determine 

the linear and nonlinear interconnections among the dependent and independent parameters. A fundamental unit 

of ANN is an artificial neuron (node), which has a layered structure and can supervise the input and deliver the 

output to other neurons in a network. Initially, when an artificial neuron receives the input that is weighted, it 

decides whether the output signal should be feedforward to the following layer as input. Such a decision-making 

process is known as bias, and it is defined via the activation function built into the network system [13]. 

 

In multilayer perceptron ANN the data is feedforwarded from input to output neurons in one direction with no 

back loops through several hidden layers. It can also minimize the gradient error by adjusting weight and biases 

in non-linear models [13]. Herein, the designed multilayer perceptron ANNs start by initializing the weights and 

threshold values and setting the hyperparameters and then, training the model by propagating forward the inputs 

layer by layer to generate the output response. When the error gradient is evaluated, it would be propagated 

backwards, and the weights and biases would be updated (see Fig. 1).  
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Fig. 1: A schematic diagram of the optimization process of ANN algorithms. 

 

In general, the output of the dependent variable (y) is predicted for a group of the input of independent variables 

(x) as shown in Eq. (1) [9]. 

 

𝑦 = 𝑓 ∑ 𝑤𝑖 ∗ 𝑥𝑖𝑖 + 𝑏                                                                                  (1) 

 

Where y is the network output, xi describes the input values, wi describes the weights, b is the biases, and f is the 

activation function. The basic structure of feedforward ANNs in the current study contains four layers which are 

one input layer, one output layer and two hidden layers (see Fig. 2). The objective is to build different predictive 

approaches based on ANN algorithms and classical MLR model using the experimental data sets of undoped 

ZnO thin films, which were obtained from international journals [14-40]. 

 

 
Fig. 2: A basic diagram of ANN models. 
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The ANN- SCG and ANN- GD models were built and tested using the Neural Network Toolbox from IBM 

SPSS software version 26. Two input parameters namely, the substrate temperature and the solution 

concentration were investigated with regard to the band gap energy as the output response. The datasets were 

partitioned to be trained, tested, and validated. The training data was used to identify the weights and build the 

model, while the testing data was employed to determine errors and prevent overtraining during the training 

stage. To evaluate the model accuracy, the band gap energy was predicted with the independent factors in the 

test dataset and then the results were compared with the targeted values of the band gap energy in the test 

dataset. In addition, the Prediction performance of the ANN- SCG and ANN- GD models was compared to the 

MLR model 

Results and discussion 

In general, the ANNs performance is considerably influenced by the type of proposed algorithms, the number of 

hidden layers, the hyperparameters of the training process, and the activation functions which can lead to 

generating a high performing model by optimizing the neural network output. In the current work, two 

supervised learning ANNs algorithms were applied with the mostly used nonlinear activation functions, namely 

sigmoid and hyperbolic tangent functions. To identify the most efficient models, the hyperbolic tangent and 

sigmoid functions were employed as input and output functions respectively, in models ANN- SCG (1) and 

ANN- GD (1) respectively.  Whilst models ANN- SCG (2) and ANN- GD (2) were trained by applying the 

sigmoid and hyperbolic tangent functions as input and output activation functions, respectively. All ANN- GD 

models were trained with learning rates of 0.2 and momentum parameters of 0.75. furthermore, a classical MLR 

analysis was utilized as a predictive technique to evaluate the band gap energy of undoped ZnO thin films, and 

each model was trained by the empirical data sets which are summarized in table (1). 

 

Table. 1 the input experimental data sets of undoped ZnO thin films. 

T (°C) 
M (mol/L) 

 

Eg (eV) 

 
Ref 

350 0.05 3.08 14 

350 0.075 3.22 14 

350 0.1 3.37 14 

350 0.125 3.15 14 

350 0.1 3.1 15 

450 0.05 3.25 16 

300 0.1 3.06 17 

350 0.02 3.19 18 

300 0.1 3.168 19 

350 0.1 3.25 19 

400 0.1 3.229 19 

200 0.1 3.31 20 

350 0.1 3.27 20 

500 0.1 3.28 20 

300 0.1 3.292 21 

350 0.1 3.317 21 

400 0.1 3.441 21 

350 0.1 3.27 22 

450 0.2 3.29 23 

410 0.1 3.26 24 

350 0.1 3.42 25 

350 0.1 3.304 26 

300 0.1 3.25 27 

200 0.1 3.4 28 

250 0.1 3.15 29 

300 0.1 3.222 29 

350 0.1 3.25 29 

400 0.1 3.275 29 

450 0.1 3.275 29 

285 0.2 3.28 30 
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450 0.2 3.285 31 

450 0.05 3.25 32 

450 0.1 3.277 33 

450 0.05 3.29 34 

400 0.1 3.125 35 

460 0.01 3.28 36 

375 0.1 3.24 37 

450 0.2 3.37 38 

450 0.1 3.28 39 

400 0.1 3.29 40 

 

The forecasting performance and accuracy for the designed ANN models were determined via different 

statistical metrics, including RMSE (Eq. (2)), MAPE (Eq. (3)), the R2 coefficient (Eq. (4)), and the relative error 

(r) (Eq. (5)). 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑡 − 𝑦𝑡

′́)2𝑛
𝑖=1                                                                                     (2) 

 𝑀𝐴𝑃𝐸 =
1

𝑛
∑

|𝑦𝑡−𝑦𝑡
′́|

𝑦𝑡

𝑛
𝑖=1 ∗ 100                                                                                  (3) 

 

𝑅2 = 1 −
∑ (𝑦𝑡 − 𝑦𝑡

′)2𝑛
𝑖=1

∑ (𝑦𝑡
′)2𝑛

𝑖=1
⁄                                                                        (4)  

 

𝑟 =
𝑆𝑖𝑚𝑜𝑢𝑡−𝐴𝑐𝑡𝑜𝑢𝑡 

𝐴𝑐𝑡𝑜𝑢𝑡
× 100                                                                                            (5)     

 

Where yt, and y′t are the observed and targeted band gap energy values respectively, and n is the total number of 

datasets. The mathematical metric error RMSE is used to assess the model performance; it has always a positive 

value and the optimum case should be zero. The RMSE values for all proposed models are summarized in 

Table. 2. 

Table. 2. The statistical metrics errors of the proposed ANNs and MLR models. 

Model 

 

RMSE 

(training

) 

RMSE 

(testing) 

MAPE 

% 
R2 r 

ANN- GD (1) 0.121 0.055 
1.70 

 
0.9999 0.969 

ANN- SCG 

(1) 
0.127 0.064 

1.71 

 
0.9993 0.979 

ANN- GD (2) 0.240 0.125 
1.73 

 
0.9988 1.163 

ANN- SCG 

(2) 
0.212 0.195 

1.75 

 
0.9983 1.186 

MLR RMSE=0.080  0.063  

 

Lower values of RMSE refer to the high performance of the suggested algorithms, as can be noticed from Table 

2. When all models were trained, ANN-GD (1) and ANN-SCG (1) were the most ideal ones with RMSE of 

0.055 and 0.064 for testing data, respectively. In addition, the R2 coefficient shows how precise the simulated 

values of models near fit or fit the targeted values, and favourably the highest value refers to the well-fitted 

model with a strong correlation among the simulated and targeted data. The performance of the suggested ANNs 

models in terms of the R2 coefficient is shown in Table 2. The ANN-GD (1) and ANN-SCG (1) displayed the 



142 | African Journal of Advanced Pure and Applied Sciences (AJAPAS)   

 

best fit by the obtained results of 0.9999 and 0.9993 than the classical MLR model. Moreover, it observed that 

ANN-GD (1) and ANN-SCG (1) models had a lower relative error of 0.969 and 0.979 respectively. Therefore, 

the most creditable models according to evaluated output were ANNs models, whilst the MLR model 

emphasized lower prediction accuracy in terms of RMSE of 0.080 and R2 of 0.063.  

Additionally, it found based on a comparison of simulated and targeted network output of band gap energy for 

the validated ANN-GD (1) and ANN-SCG (1), satisfactory performance and high efficiency of those models 

shown in Figs. 3, 4.  

 

 

Fig. 3. Scatter plots of ANN-GD (1) and ANN-SCG (1) for simulated and targeted values. 
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Points located on or nearby the line have an ideal prediction than those that are away from the line, also there 

are no obvious patterns. The regression plots showed an ‘excellent fit’ proving that the network output of 

proposed ANNs models was approximately similar to the empirical output. Moreover, it essential to plot 

residuals versus fitted data, since the residuals are an indicator to the differences between measured and 

simulated data of the assumed models. 

 

 
Fig. 4. Simulated and targeted band gap energy of ANN-GD (1) and ANN-SCG (1). 

It was observed that the residuals were nearly normally distributed around the line of fit (zero) and no clear 

patterns or points were found in residuals plots (see Fig. 5). Lastly, in Fig.6, the ANNs models are visualized as 

three-dimensional surfaces according to the training and testing datasets. It can be observed that the nonlinear 

correlation between dependant and independent variables presented in the form of non-flat surfaces. ANNs as 

ML approaches were proven to be potential solution to overcome complexity of nonlinear characteristic 

between the input and output physical variables. 
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Fig. 5. Residual plots of band gap energy for ANN-GD (1) and ANN-SCG (1). 
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Fig. 6. 3D-surface plot of ANNs model for the band gap energy. 

 

Conclusion 

In this study, the comparative predictive ML approaches include ANN-SCG and ANN-GD associated with a 

conventional MLR technique were investigated to predict the band gap energy of undoped ZnO thin films. The 

results of ANN-SCG and ANN-GD models showed better performance and significant accuracy with high 

values of R2 of 0.9999 and 0.9993, respectively. In contrast, MLR findings had less efficiency with lower value 

of R2 of 0.063. In addition, ANN-SCG and ANN-GD showed smaller error in terms of RMSE, MAPE, and r 

than the MLR analysis. Based on the findings, it was shown that ANNs as ML models were an efficient tool in 

providing highly predictive accuracy of the system than standard MLR model.  Moreover, the obtained results 

validate that ANNs approach can be adopted for prediction the nonlinear characteristics of nanostructures for 

highly performed optical devices as well as for comprehensively link the input and output parameters of the 

fabrication process especially when more factors are taken in consideration.  

 

Abbreviations  

Artificial neural networks                                                                                   ANNs 

Scaled conjugate gradient                                                                                   SCG 

Gradient descent                                                                                                    GD 

Machine learning                                                                                                 ML 

Zinc oxide                                                                                                              ZnO 

Photoluminescence                                                                                                PL 

Zinc oxide nanoparticles                                                                                   ZnO NPs 

Adaptive network-based fuzzy inference system                                              ANFIS 

Golden eagle optimizer                                                                                        GEO 

Kernel ridge regression                                                                                        KRR 
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Levenberg-Marquardt                                                                                          LM 

Root mean square error                                                                                       RMSE 

Mean absolute percentage error                                                                          MAPE 
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