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Abstract:  

This article develops a new conjugate gradient algorithm in a scaled conjugate gradient field. The proposal 

depends on the following algorithms: Quasi-Newton and classical conjugate gradient. Under certain assumptions, 

the developed algorithm satisfies the descent direction and global convergence property. Additionally, the hybrid 

scaled gradient algorithm is involved in the new direction. Compared to the classical algorithm, the numerical 

outcomes demonstrate the superiority of our algorithm in tackling unconstrained nonlinear optimization 

problems.  
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Introduction 

In 1988, Barzilai and Borwein [1] developed the spectral conjugate gradient. The algorithm is often used to solve 

unimpeded optimization problems. In the late 90s, the algorithm was developed by Raydan [2], [3] to solve the 

problems of large ruler unimpeded optimization. It is utilized in each line exploration worldwide converge; 

therefore, the Gradient direction is crucial and held by a non-monotone plan. General unimpeded optimization is 

formulated under the following: 

𝑓(𝑥),   𝑥 ∈ 𝑅𝑛  (1) 

The problem is explained iteratively and started from an initial point  

𝑥0 ∈ 𝑅𝑛. The conjugate gradient algorithm, according to the relapse formulation, follows as under.  

𝑥𝑘+1 = 𝑥𝑘 + 𝑎𝑘𝑑𝑘 ,     𝑘 = 0, 1, 2, ….  (2) 

where 𝑥𝑘 denotes the current iteration, the stepsize is 𝑥𝑘 > 0 where some line exploration process is in the 

calculation. In the literature, Wolfe [4], [5], Armijo [6] and Goldstein [7] are widely utilized line explorations. In 

the line explorations, determining stepsize is the change between exact and imprecise. For an exact line search, ak 

can be calculated using its rule. On the other hand, for elementary imprecise line exploration, ak is projected. 

Additionally, at a minimal cost, it attains an adequate reduction in f. Using Strong Wolfe, we fixated the 

exploration. The conditions that define Wolfe line search [8] are formulated as follows. 

𝑓(𝑋𝑘 + 𝑎𝑘𝑑𝑘) ≤ 𝑓(𝑋𝑘) + 𝜇𝑎𝑘𝑔𝑘
𝑇𝑑𝑘  (3) 

𝑔𝑘+1
𝑇 𝑑𝑘 ≥ 𝜎𝑔𝑘

𝑇𝑑𝑘  (4) 

Nocedal and Wright [9] are used to build and book 𝜎 and 𝜇 for this search, and 0 < 𝜇 < 𝜎 < 1. Condition (4) is 

known as the Strong Wolfe line search after replacing it with the following condition. 

|𝑔
𝑘+1
𝑇 𝑑𝑘| ≥ −𝜎𝑔

𝑘
𝑇𝑑𝑘  (5) 

For 𝑑𝑘, the basic search direction is formulated as follows: 

𝑑𝑘+1 = −𝑔𝑘+1 + 𝛽𝑘𝑑𝑘,            𝑑1 = −𝑔1  (6) 
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𝑔𝑘 = 𝑓(𝑋𝑘)   

where different conjugate gradient methods are determined by the coefficient 𝛽
𝑘

∈ 𝑅 with a little common 𝛽
𝑘+1

. 

𝛽
𝑘

𝐶𝐷
= −

𝑔𝑘
𝑇𝑔𝑘

𝑑𝑘−1
𝑇 𝑔𝑘−1

, 𝛽𝑘
𝐻𝑆 = −

𝑔𝑘+1
𝑇 𝑦𝑘

𝑑𝑘
𝑇𝑦𝑘

, 𝛽𝑘
𝑃𝑅 = −

𝑔𝑘+1
𝑇 𝑦𝑘

𝑔𝑘
𝑇𝑔𝑘

, 𝛽𝑘
𝐹𝑅 = −

𝑔𝑘+1
𝑇 𝑔𝑘+1

𝑔𝑘
𝑇𝑔𝑘

                                           

where ‖ . ‖ and 𝑔𝑘 = 𝛻𝑓(𝑥𝑘)  indicate the Euclidian norm of vectors. 

Fletcher Reeves (FR) [10], Hestenes and Stiefel (HS) [11], Polak-Ribiere-Polyak (PR) [12] and Conjugate Descent 

(CD) by Fletcher [13]. 

This research is structured as follows. Section 2 presents our proposal, A new spectral conjugate gradient 

algorithm. For each repetition, Section 3 shows the algorithm’s ancestry conditions. Satisfaction of the global 

convergence condition is presented in Section 4. Evaluation of the algorithm via some numerical experiments is 

conducted in Section 5. 

A New Spectral Conjugate Gradient Algorithm  

for Unconstrained Optimization, the algorithm is formulated as follows. 

−𝐻𝑘+1
𝐷𝐹𝑃𝑔𝑘+1 = −𝑔𝑘+1 + 𝛽𝑘

𝐻𝑆𝑑𝑘  (7) 

−𝐻𝑘+1
𝐷𝐹𝑃𝑔𝑘+1 + 𝑔𝑘+1 = 𝛽𝑘

𝐻𝑆𝑑𝑘  (8) 

𝑑𝑘 =
−𝐻𝑘+1

𝐷𝐹𝑃𝑔𝑘+1+𝑔𝑘+1

𝛽𝑘+1
𝐻𝑆   (9) 

𝑑𝑘+1 = −𝑔𝑘+1 + 𝛽𝑘+1 (
−𝐻𝑘+1

𝐷𝐹𝑃𝑔𝑘+1+𝑔𝑘+1

𝛽𝑘+1
𝐻𝑆 )  (10) 

Suppose that −𝐻𝑘+1
𝐷𝐹𝑃𝑔𝑘+1 = 𝑑𝑘+1  

𝑑𝑘+1 = −𝑔𝑘+1 + 𝛽𝑘+1 (
−𝑑𝑘+𝑔𝑘+1

𝛽𝑘+1
𝐻𝑆 )  (11) 

𝑑𝑘+1 = (𝛽𝑘+1
𝑑𝑘

𝑇𝑦𝑘

𝑔𝑘+1
𝑇 𝑦𝑘

− 1) 𝑔𝑘+1 − 𝛽𝑘+1
𝑑𝑘

𝑇𝑦𝑘

𝑔𝑘+1
𝑇 𝑦𝑘

  (12) 

 The steps for implementing the proposed algorithm are as follows: 

Firstly (Initialization), choose 𝑥1 ∈ 𝑅𝑛 and calculate 𝑓(𝑋1) and 𝑔1. Let 𝑑1 = −𝑔1, and set the initial to: 

𝑔𝑢𝑒𝑠𝑠 𝑎1 =
1

‖𝑔1‖
 

Secondly (test for iterations’ continuation), if ‖𝑔𝑘+1‖ ≤ 10−6, then stop. 

Thirdly (line search), calculate 𝑎𝑘+1 > 0 satisfying the Wole line search conditions (three and four), then the 

variables 𝑋𝑘+1 = 𝑋𝑘 + 𝑎𝑘𝑑𝑘 will be updated. 

Lastly (direction new computation), calculate 𝑑𝑘+1 = (𝛽𝑘+1
𝐷𝑌 𝑑𝑘

𝑇𝑦𝑘

𝑔𝑘+1
𝑇 𝑦𝑘

− 1) 𝑔𝑘+1 − 𝛽𝑘
𝐷𝑌 𝑑𝑘

𝑇𝑦𝑘

𝑔𝑘+1
𝑇 𝑦𝑘

𝑑𝑘. 𝑑𝑘+1 = −𝑔𝑘+1 

if Powell’s restart criterion |𝑔
𝑘+1
𝑇 𝑔

𝑘
| ≥ 0.2‖𝑔

𝑘+1
‖2. Otherwise 𝑑𝑘+1 = 𝑑 is defined. Calculate the initial guess 

𝑎𝑘 = 𝑎𝑘−1
‖𝑑𝑘−1‖

‖𝑑𝑘‖
, 𝑘 and continue with the second step. 

Algorithm’s Descent Property 

The descent property of the proposed algorithm can be denoted via 𝑑𝑘+1 = (𝛽𝑘+1
𝑑𝑘

𝑇𝑦𝑘

𝑔𝑘+1
𝑇 𝑦𝑘

− 1) 𝑔𝑘+1 −

𝛽𝑘+1
𝑑𝑘

𝑇𝑦𝑘

𝑔𝑘+1
𝑇 𝑦𝑘

𝑑𝑘 in the following theorem. 
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Theorem (1)  

The following equation formulated the search direction 𝛽
𝑘+1

 and 𝑑𝑘+1 

𝑑𝑘+1 = (𝛽𝑘+1
𝑑𝑘

𝑇𝑦𝑘

𝑔𝑘+1
𝑇 𝑦𝑘

− 1) 𝑔𝑘+1 − 𝛽𝑘+1
𝑑𝑘

𝑇𝑦𝑘

𝑔𝑘+1
𝑇 𝑦𝑘

𝑑𝑘     (**) 

Will hold for all 𝑘 ≥ 1 

Proof:  

Induction is used for the proof.  

1. 𝑔1𝑑1 < 0, 𝑑1 = −𝑔1 →< 0 when 𝑘 equals one. Thus, using Wolfe’s conditions 𝑑𝑘
𝑇𝑦𝑘 > 0. 

2. For all 𝑘, suppose 𝑑𝑘
𝑇𝑦𝑘 < 0. 

3. When 𝑘 = 𝑘 + 1 and in 𝑔𝑘+1
𝑇 , to prove the above relation is correct by multiplying the equation (**), we 

achieved the following. 

𝑔𝑘+1
𝑇 𝑑𝑘+1 = (𝛽𝑘+1

𝑑𝑘
𝑇𝑦𝑘

𝑔𝑘+1
𝑇 𝑦𝑘

− 1) 𝑔𝑘+1
𝑇 𝑔𝑘+1 − 𝛽𝑘+1

𝑑𝑘
𝑇𝑦𝑘

𝑔𝑘+1
𝑇 𝑦𝑘

𝑔𝑘+1
𝑇    (13) 

Let us consider  

𝑎 = (𝛽𝑘+1
𝑑𝑘

𝑇𝑦𝑘

𝑔𝑘+1
𝑇 𝑦𝑘

− 1) 𝛽𝑘+1, and  𝑏 =
𝑑𝑘

𝑇𝑦𝑘

𝑔𝑘+1
𝑇 𝑦𝑘

 

𝑔𝑘+1
𝑇 𝑑𝑘+1 = 𝑎𝑔𝑘+1

𝑇 𝑔𝑘+1 − 𝑏𝑔𝑘+1
𝑇 𝑑𝑘   (14) 

Additionally, 𝑏 > 0 and 𝑎 > 0 

𝑔𝑘+1
𝑇 𝑑𝑘+1 = 𝑎𝑔𝑘+1

𝑇 𝑔𝑘+1 − 𝑏𝑔𝑘+1
𝑇 𝑑𝑘 < 0   (15) 

𝑔𝑘+1
𝑇 𝑑𝑘+1 < 0   (16) 

Global Convergence Analysis 

with 𝛽
𝑘+1

 converges, next, we investigate the conjugate gradient algorithm globally. For the convergence of the 

suggested algorithm, the assumptions are required. 

Assumption (1) [14], [15]  

1. In some Initial points and the level set 𝑆 = {𝑋 ∈ 𝑅𝑛: 𝑓(𝑥) ≤ 𝑓(𝑋°)}, we assume 𝑓 is bound. 

2. 𝑓 is differentiable continuously, and its gradient is Lipshitz continuous, 𝐿 > 0 exists such as: 

‖𝑔(𝑥) − 𝑔(𝑦)‖ ≤ 𝐿‖𝑋 − 𝑌‖   (17) 

3. 𝑓 is a uniformly convex function, then there exists  𝜇 > 0 such that, 

(𝛻𝑓(𝑥) − 𝛻𝑓(𝑦))𝑇(𝑥 − 𝑦) ≥ 𝜇‖𝑥 − 𝑦‖2, 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑥, 𝑦, ∈  𝑆)  (18) 

or equivalently 

𝑦𝑘
𝑇𝑆𝑘 ≥ 𝜇‖𝑆𝑘‖2𝑎𝑛𝑑 𝜇‖𝑆𝑘‖2 ≤ 𝑦𝑘

𝑇𝑆𝑘 ≤ 𝐿‖𝑆𝑘‖2  (19) 

By contrast, it is clear that positive constant 𝛽 exists under assumption 1, such as: 

‖𝑥‖ ≤ 𝛽, ∀𝑥 ∈ 𝑆  (20) 

‖𝛻𝑓(𝑥)‖ ≤ 𝑦, ∀𝑥 ∈ 𝑆  (21) 

Lemma (1) [16], [17] 

Let eq. (20) and assumption (1) are held. Consider any conjugate gradient method in the forms (2) and (6). The 

descent direction is defined by 𝑑𝑘 and the strong Wolfe line search is used to obtain 𝑎𝑘. If  

∑𝑘>1
1

‖𝑑𝑘+1‖2 = ∞    (22) 

Accordingly, we get 



151 | African Journal of Advanced Pure and Applied Sciences (AJAPAS)   

 

𝑖𝑛𝑓‖𝑔𝑘‖  = 0  

We refer the reader to [18]–[20] for further information. 

Theorem (3) 

Suppose the descent condition, the eq. (20) and assumption (1) are held. 

𝑑𝑘+1 = (𝛽𝑘+1
𝑑𝑘

𝑇𝑦𝑘

𝑔𝑘+1
𝑇 𝑦𝑘

− 1) 𝑔𝑘+1 − 𝛽𝑘+1
𝑑𝑘

𝑇𝑦𝑘

𝑔𝑘+1
𝑇 𝑦𝑘

   (23) 

We use the Wolfe line search conditions (3) and (4) to compute 𝑎𝑘. Note that 𝑖𝑛𝑓‖𝑔𝑘‖  = 0 if the objective 

function is uniformly on set S. 

Proof: 

In the beginning, we substitute 𝛽
𝑘+1

 in the direction 𝑑𝑘+1to determine the following. 

𝑑𝑘+1 = (𝛽𝑘+1
𝑑𝑘

𝑇𝑦𝑘

𝑔𝑘+1
𝑇 𝑦𝑘

− 1) 𝑔𝑘+1 − 𝛽𝑘+1
𝑑𝑘

𝑇𝑦𝑘

𝑔𝑘+1
𝑇 𝑦𝑘

   (24) 

‖𝑑𝑘+1‖2 = ‖ (𝛽𝑘+1
𝑑𝑘

𝑇𝑦𝑘

𝑔𝑘+1
𝑇 𝑦𝑘

− 1) 𝑔𝑘+1 − 𝛽𝑘+1
𝑑𝑘

𝑇𝑦𝑘

𝑔𝑘+1
𝑇 𝑦𝑘

‖2  (25) 

Assume that  

a =(𝛽
𝑘+1

𝑑𝑘
𝑇𝑦𝑘

𝑔𝑘+1
𝑇 𝑦𝑘

− 1) 𝛽𝑘+1, and 𝑏 =
𝑑𝑘

𝑇𝑦𝑘

𝑔𝑘+1
𝑇 𝑦𝑘

 

‖𝑑𝑘+1‖2 = ‖𝑎𝑔𝑘+1 − 𝑏𝑑𝑘‖2  (26) 

‖𝑑𝑘+1‖2 ≤ 𝑎‖𝑔𝑘+1‖2 + 𝑏‖𝑑𝑘‖2  (27) 

‖𝑑𝑘+1‖2 ≤ 𝑎𝑌2 + 𝑏‖𝑑𝑘‖2  (28) 

‖𝑑𝑘+1‖2 ≤
1

𝑌2 𝑎(𝑌2)2 + 𝑌2𝑏‖𝑑𝑘‖2  (29) 

Let 𝑐 = (𝑎(𝑌2)
2

+ 𝑌2𝑏‖𝑑𝑘‖2) 

‖𝑑𝑘+1‖2 ≤ 𝑐
1

𝑌2  (30) 

∑

∞

𝑘=1

1

‖𝑑𝑘+1‖2
≤

1

𝑐
𝑌2 ∑

𝑘≥1

1 = ∞ (31) 

‖𝑔𝑘‖  = 0  (32) 

 

Performance Evaluation and Comparisons 

Here, we present some preliminary numerical results of comparison between our algorithm and Classical 

conjugate gradient direction one. Specifically, for unconstrained Optimization, we used 𝛽
𝑘

𝐷𝑌
to evaluate the 

performance of the new formal 𝑑𝑘+1 in both algorithms. For each test problem taken from [21], (70) large-scale 

unconstrained optimization problem is selected. For each test function, the number of variables is taken as (𝑛 =
1000, … . ,10000) and is considered in the numerical examples. The comparisons are conducted of the new 

versions with the classical direction. The algorithms are deployed using the standard Wolfe line search conditions 

(3) and (4). We assigned stopping criteria to be ‖𝑔𝑘‖ = 10−6 in all the cases. Via F77 default compiler settings, 

the utilized software is FORTRAN Language. Usually, the test functions begin point standard initially. As shown 

in Figures (1, 2 and 3), the findings are then drawn using Matlab. The performance profile utilized by Dolan and 

More´ in [22] has been used to evaluate and show our algorithm’s performance. Furthermore, we used 𝛽
𝑘

𝐹𝑅
 to 

compare our algorithm with the classical direction algorithm. We considered the interested solvers set 𝑆 = 2 and 

𝑝 = 700 as the whole set of 𝑛𝑝 test problems. For the problem 𝑝, suppose that 𝐼𝑝,𝑠 is the number of objective 

function evaluations needed by the solver 𝑆. Accordingly, the performance ratio can be formulated as follows. 

𝑟𝑝,𝑠
𝐼𝑝,𝑠

𝐼𝑝
∗ = ∞    (33) 

where𝐼𝑝
∗ = 𝑚𝑖𝑛 {𝐼𝑝,𝑠: 𝑠 ∈ 𝑆}. For all 𝑝, 𝑎𝑛𝑑 𝑠, it is clear that 𝑟𝑝,𝑠 ≥ 1. The ration 𝑟𝑝,𝑠 is considered a large number 

𝑀 if the mathematician couldn’t solve the problem. For performance ratio 𝑟𝑝,𝑠, cumulative distribution function 

(in below) is used to define the profile for each solver 𝑠. 

 𝑝𝑠(𝜏) =
𝑠𝑖𝑧𝑒{𝑝∈𝑃:𝑟𝑝,𝑠≤𝜏}

𝑛𝑝
 (34) 

Clearly, for each solver 𝑠, the percentage of problems (𝑝𝑠(1)) is the best. We refer the reader to [22] for further 

information on the performance profile. We used the performance profile to analyze CPU time, the number of 

gradient evaluations and the number of iterations. Furthermore, in the following figures, we considered the 

horizontal coordinate a log scale for clear observation.  

Note the following points:  

▪ Choose 𝑎𝑘 [23] using Wolfe conditions (11) and (12). 
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▪ Let 𝜉=0.01. 

𝑑𝑘+1 = (𝛽𝑘+1
𝐷𝑌 𝑑𝑘

𝑇𝑦𝑘

𝑔𝑘+1
𝑇 𝑦𝑘

− 1) 𝑔𝑘+1 − 𝛽𝑘+1
𝐷𝑌 𝑑𝑘

𝑇𝑦𝑘

𝑔𝑘+1
𝑇 𝑦𝑘

𝑑𝑘  

▪ 𝐷𝑌 is  

DYC is 𝑑𝑘+1 = −𝑔𝑘+1 + 𝛽𝑘+1
𝐷𝑌 𝑑𝑘 . 

The following figures indicate a comparison between the new DYN algorithm and the classical DYC algorithm, 

where the blue curve indicates the new DYN algorithm and the red curve indicates the classical DYC algorithm. 

The closer the curve is to one, the better the result will be according to Donald and Moore comparisons; Hence, 

it became clear to us that the new DYN algorithm is clearly close to 1 in the figures, which means that it is better 

than the classic DYC algorithm. 

 

 

 
Figure 1. Performance-based on iteration 

 

 

 
Figure 2. Performance-based on Function 
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Figure 3. Performance-based on Time 

 

Conclusion 

In this research, we developed a new conjugate gradient depended on Quasi-Newton and classical conjugate 

gradient. The proposed algorithm satisfied the descent direction and global convergence property under certain 

assumptions. The numerical example demonstrated our algorithm’s superiority over the classical conjugate 

gradient direction in solving unconstrained nonlinear optimization problems. 
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