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Abstract:  

In recent years, additive manufacturing (AM) for metals, which uses layer-by-layer deposition of materials to 

construct nearly net-shaped items, has attracted interest as a way to improve the effectiveness of production 

processes in a variety of industries. One of the latest developments in additive manufacturing techniques is Wire 

arc additive manufacturing (WAAM). In this work, a low carbon steel wall has been wire arc additively 

manufactured (WAAM) using the gas metal arc welding technique. an anisotropic behaviour of microstructure 

and mechanical properties such as impact toughness, yield strength, ultimate tensile strength, and the percentage 

of elongation have been investigated in three different directions, vertical (90°), horizontal (0°) and diagonal 

(45°). The pearlite fractions in Top, front and diagonal planes were 18.45%, 16.14% and 17.76% respectively. 

These variations of pearlite fraction affect the mechanical properties of the additively manufactured wall; the 

anisotropic percentages of ultimate tensile strength and impact toughness for the vertical and horizontal directions 

were 13.63 % and 9.42 % respectively, relatively higher than those of horizontal and diagonal directions.    

 

Keywords: Wire Arc Additive Manufacturing (WAAM), Gas Metal Arc Welding, Anisotropy, Impact 

Toughness. 
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تباين البنية المجهرية والخواص الميكانيكية في ألواح الصلب منخفض الكربون المصنعة  

 والغازات الخاملة والنشطة  المستهلك بالإضافة باستخدام لحام القوس 
 

   4محمد اعمار السراج  ،3هشام رمضان الشعباني ،2، عادل محمد ضو* 1حسن علي السعداوي
 ليبيا   ،طرابلس ،المتقدم لتقنيات اللحامالمركز الليبي المهني   4،3،2،1

 

 الملخص 

  كوسيلة   الأخرى، الاهتمام  تلو  في تصنيع منتجات بترسيب المواد طبقة  والمتمثل للمعادن،  (AM) الإضافي  التصنيع  اجتذب  الأخيرة،   السنوات  في

 التصنيع الإضافي بالسلك والقوس  هو  بالإضافة  التصنيع  تقنيات  في  التطورات  أحدث  أحد.  الصناعات  من  العديد   في  الإنتاج  عمليات  جودة  لتحسين

(WAAM) التصنيع الإضافي بالسلك والقوس  بطريقة  الكربون  منخفض  من الصلب  تصنيع جدار  تم  العمل،   هذا  . في (WAAM) لحام    باستخدام

 مقاومة  الخضوع،  مقاومة  مقاومة الصدم،   مثل  الميكانيكية  والخواص   المجهرية  تباين البنية  دراسة   تم.  الخاملة والنشطة  والغازات  القوس المستهلك

https://aaasjournals.com/index.php/ajapas/index
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  في  لايتر البي  نسبة  كانت  درجة(.  45)  وقطري(  درجة  0)  أفقي  ، (درجة  90)  عمودي  مختلفة،   اتجاهات  ثلاث  في  الاستطالة   ونسبة  القصوى،   الشد

  الخواص  على  تؤثر  البيرلايت  نسبة   في  الاختلافات  هذه.  التوالي  على%  17.76و%  16.14  ، %18.45  والقطري  والأمامي  العلوي  المستوى

% 13.63  والأفقي  الرأسي  القصوى ومقاومة الصدم للاتجاهين   الشد  قوة  التباين في  نسب  حيث كانت  إضافي،   بشكل  المصنعة  للجدران  الميكانيكية

 .والقطري الأفقي بالاتجاهين الخاصة تلك من نسبيا   أعلى  وهي التوالي،  على% 9.42و

 

 .، تباين الخواص، مقاومة الصدموالغازات الخاملة  لحام القوس المستهلك ، (WAAM)التصنيع الإضافي بالسلك والقوس  :المفتاحية الكلمات

1. Introduction 

Manufacturing companies face intense competition; therefore, they must constantly work on product development 

to get a competitive edge. Companies need also keep up with changes in manufacturing technologies, such as 

additive manufacturing. This is due to the symbiotic relationship between technology and product development; 

successful products can only be produced with the best lead-time if both are improved concurrently [1, 2]. 

Additive manufacturing (AM) refers to layer-by-layer and down-up manufacturing technology based on the 

deposition principle without using any additional resources such as cutting tools and cooling fluid [3,4,5,6].  

The use of metal additive manufacturing (AM) has increased recently across a number of sectors, including the 

aerospace, military, automotive, oil, and medical industries. Powder Bed Fusion Additive Manufacturing (PBF) 

and Directed Energy Deposition Additive Manufacturing (DED) are the two basic categories into which metal 

AM processes can be divided. In PBF AM, a heat source fuses layers of material in powder form. The products 

are created in the DED AM by layering material in the form of wire or sheets and fusing it with heat [7,8]. 

Weld metal deposition to produce functional surfaces or structures is not a recent development. Build-up welding 

is a widely used technique for surfacing or repair purposes. The basic idea of using arc welding to produce precise 

shaped items was originally introduced in 1925. The technology, which is now commonly referred to as Wire + 

arc additive manufacturing (WAAM), has gained considerable interest because to recent advancements in additive 

manufacturing of metals and new arc technologies process [9]. 

Wire arc additive manufacturing process (WAAM) deposits a metal wire using an arc heat source. In the WAAM 

process, a traditional welding machine may be used as a heat source that decreases the initial investment costs 

compared to the laser and electron beam heat sources. In addition, the cost of raw materials of the wire type is 

roughly 10 per cent of the cost of raw materials of the powder type [6,10,11]. The WAAM process therefore 

produces a high deposition rate at a low cost, making it a highly favoured process for the manufacturing of large 

components using expensive materials [12,13,14]. 

The WAAM technique may be used with a variety of materials, such as steels, Inconel, and titanium, and it is 

frequently used with expensive materials to create close-to-net-shape items that minimize material waste [15]. 

Among different materials, Steel is the most used materials in many sectors of engineering. Therefore, steel is 

most studied materials for WAAM as well. the changes of microstructural and property during welding and 

additive manufacturing are widely understood but still under investigation [4,16]. Due to sequential melting and 

solidification in wire arc additive manufacturing process, each region of the part is subjected to different thermal 

cycles which lead to anisotropic behaviour of microstructure and mechanical properties. Therefore, it is important 

to investigate the anisotropic behaviour of WAAM'd parts [13,17,18,19]. 

Few studies have investigated the anisotropy of microstructure and mechanical properties of carbon steel 

additively manufactured parts. Rafieazad et al. [20] studied the tensile properties of the fabricated WAAM-

ER70S-6 part and obtained comparable yield and ultimate tensile strengths along the building (vertical) direction 

and deposition (horizontal) direction. However, the ductility along the horizontal direction was approximately 

three times higher than that of the vertical direction. Same results have been reported by Ghaffari et al. [21] the 

tensile strength of the component was found to be isotropic, whereas the ductility of the fabricated samples 

revealed significant anisotropy. Also, no obvious anisotropy in mechanical properties have been observed by 

Haden et al. [22]. On the other hand, Le et al. [23] reported the anisotropic mechanical properties in WAAM low-

carbon steel walls. Nagasai et al. [24] studied the impact toughness of cylindrical wall component in the vertical 

direction and compare the results with (ER70S-6 filler metal). 

The following work is based on the deposition of successive layers to build up a wall of low carbon steel (ER70S-

6) and will be carried out in two phases, the initial study aims to achieve the optimum process parameters. And, 

the second phase of the work will focus on anisotropic behaviour of microstructure and mechanical properties 

such as impact toughness, yield strength, ultimate tensile strength, and the percentage of elongation in three 

different directions such as building (vertical) (90°), deposition (horizontal) (0°) and diagonal (45°) directions. 

 

2. Experimental Work  

2.1 Materials 

Two steels have been employed in this experimental work: 

1- Low carbon steel plate St 37 with the dimensions of 500 mm × 200 mm × 10 mm were used as substrates 

to carry out the experiments. This work was focused only on the AM layers and did not include the 

interface layer. 
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2- Low carbon steel (ESAB OK Autrod 12.51) filler wire which was standardized as per SFA/AWS A5.18 

: ER70S-6 and EN ISO 14341-A : G 38 2 C1 Z 3Si1 was used as the feedstock material in the experiments 

[25]. The chemical composition of ER70S-6 filler material and low carbon steel St 37 are shown in Table 

1 [26]. 

 

Table 1. Chemical composition of ER70S-6 and St 37   

Alloy 

/Wt.% 
C Mn Si P S Ni Cr Mo Fe 

ER70S-6 .07 1.25 0.76 0.015 0.0053 0.008 0.014 0.002 Bal. 

St 37 0.15 0.491 0.073 0.008 0.009 0.03 0.001 0.008 Bal. 

 

2.2 Wire Arc Additive Manufacturing Procedure  

 

2.2.1 Equipment 

The system used to perform additive manufacturing deposition is composed by the integration of two different 

systems: 

▪ Welding system. In this work, the semi-automatic ESAB LKB 265 GMAW machine was used as 

the WAAM process. This WAAM method provides high deposition rate. 

▪ Three-axis movement system, the motion of the system should be easily controlled. 

The power source and movement system used for the described experimental work in this section is shown in the 

Figure 1-a. 

2.2.2 Sample Build-up  

Gas metal arc welding technique was used to deposit all beads. A reversed polarity (electrode positive) direct 

current (DCEP) between the wire electrode and the substrate was used in all runs. A wall with the size of 280 mm 

× 12 mm × 120 mm was deposited using ER70S-6 carbon steel filler metal. The substrate was St 37 carbon steel 

plate. The plate was cleaned to remove dirt, located at flat position, aligned on the platform and clamped manually. 

After clamping, the beads are built using back strep strategy (the same direction of deposition see Figure 1-b). 

When a deposit was completed, the torch back to the starting point of the next deposit, and an idle interpass time 

of 60 s was applied to cool down the walls by the atmosphere until 40 layers of material were deposited using 

mechanized torch. Schematic WAAM setup could be seen in Figure 1-c. The employed welding parameters were 

kept constant for all deposited layers as given in the Table 2. To protect the weld pool from atmospheric 

contamination a mixture of Ar + 2% O2 was used as shielding gas. 

 

 

Table 2. Welding parameters 

Parameter Setting 

Welding process 

Welding position 

Average current 

Average voltage 

Welding speed 

Wire feed rate 

Wire diameter  

Shielding gas flow rate 

Contact tube distance 

GMAW 

PA (1G) 

185 A 

28 V 

250 mm/min 

3.5 m/min 

1.2 mm 

18 L/min 

10 mm 
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Figure 1. Schematic diagram of the WAAM process: (a) Process setup, (b) Deposition strategy, (c) WAAM’d 

wall with sampling position, (d) Tensile specimen, (e) Impact specimen, (f) Microstructural examination 

specimen.      

 

2.3 Integrity Assessment of the Additively Manufactured Beads 

2.3.1 Appearance and Macroscopic Characterization  

Deposited beads performed by WAAM were visually inspected to check surface imperfections. Then dimensions 

of manufactured part, as shown in Figure 1-c,  were measured. After visual inspection, a sample from transverse 

side of WAAM’d wall was taken for macroscopic examination. The sample was etched using (Ammonium 

Persulfate at room temperature)  

 

2.3.2 Surface Waviness 

One of the most crucial factors used to assess the WAAM deposition quality is surface waviness. Surface waviness 

was defined as the maximum crest-to-trough distance measured on cross section from the deposited wall as 

illustrated in Figure 2 [27, 28]. ImageJ 1.5j8 image processing software was used to measure the surface [29]. 

Five equally spaced (10 mm from each other) measurements of width and height were performed for deposited 

wall, waviness and material usage efficiency were computed according to Equation (1) and (2), and the average 

and standard deviation values were calculated [28]. 

𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑤𝑎𝑣𝑖𝑛𝑒𝑠𝑠 (𝑆𝑊) =
(𝑊𝑚 − 𝑊𝑒)

2
                                                             (1) 

𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑢𝑠𝑎𝑔𝑒 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (𝑀𝑈𝐸) = (
𝑊𝑒 − 2𝑆𝑊

𝑊𝑒
) × 100                               (2)     

Where: Wm is maximum width and We is effective width 

 

R= 4 mm 

D= 4 

7 mm 

10 × 10 mm 

Welding torch 

Start point 

End point     

(a) 

(c) 

(f) 
(e) 

(d) 

(b) 
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Figure 2. Surface waviness measurements. 

 

2.4 Mechanical Characterization   

2.4.1 Tensile Test 

For observing tensile properties of built materials, six round tensile specimens were sectioned from the additively 

manufactured wall of ER70S-6 steel filler material, two parallel to building (vertical) (90°), two parallel to 

deposition (horizontal) (0°) and two parallel to diagonal (45°) directions as seen in Figure 1-c . Tensile samples 

were prepared according to ASTM E8 standard [30], Figure 1-d shows the dimensions of the samples. The tensile 

tests were conducted on HST universal testing machine model WDS-50E at room temperature.  

2.4.2 Impact Test  

Charpy impact tests have been performed on Six specimens having dimensions 10x10x55 mm at room 

temperature according to ASTM E23 standard [31], Figure 1-e shows the dimensions of the samples. The 

specimens were sectioned from WAAM’d wall and vee notched in three different directions, two parallel to 

building (vertical) (90°), two parallel to deposition (horizontal) (0°) and two parallel to diagonal (45°) directions 

as seen in figure 1-c. the impact test were executed using Zwick/ Roell test machine. 

2.4.3 Hardness Test 

The hardness of built materials was measured in three regions of cross section from the deposited wall: the upper, 

middle and lower region Figure 3. The hardness was measured at four locations in each region. The indentations 

were made under the load of 30 Kg over 15 s with a distance of 0.3 mm between the indentations according to 

IS0 6507.1 standard [32]. 

  

Figure 3. Hardness measurements 

2.5 Microstructural Examination  

To perform microstructural examination and investigate possible microstructural anisotropy in the WAAM’d wall, 

four samples from middle location of the wall, including the front, side, top, and the diagonal view were sectioned 

Measurement 

points 
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(illustrated in Figure 1-f). Specimens were hot-mounted in conductive bakelite, grinded and polished using 9, 6 

and 1 μm colloidal alumina suspension, then etched by 5% Nital for 20 s. The microstructure of all specimens 

was examined using HST Metallurgical Microscope Model: 402-AW. 

 

3 Results and Discussion  

3.1 Integrity Assessment of the Additively Manufactured Beads 

3.1.1 Appearance and Macroscopic Characterization  

Three-dimensional shape of the wire arc additively manufactured wall made by ER70S-6 low carbon steel filler 

metal is shown in Figure 4, displaying the geometrical measurements of the manufactured part.  

 
Figure 4. Geometrical measurements of the manufactured part 

A sample from transverse side of WAAM’d wall, as shown in Figure 5-a, was cut for surface waviness 

measurements and macroscopic examination. The surface waviness of the built wall was measured using ImageJ 

1.5j8 image processing software [29], as shown in Figure 5-b. Table 3 presents the average values of width, height, 

waviness and material usage efficiency.  

 

Table 3. Geometrical measurements of the manufactured part 

Measurements (mm) 
Number of 

Measurements 

Average 

(mm) 

Wall width 5 11.964 

Wall height 5 123.368 

Thickness of the layer 5 2.462 

Surface waviness 5 1.387 

Material usage efficiency 5 69.82 % 

The macro-image of the wall shows the built-up layers which bands in a concave shape (see Figure 5-b). The 

additively manufactured part was free of cracks and no lack of fusion or volumetric discontinuities were detected. 

These findings indicating the suitability of using GMAW as WAAM technique to construct a wall of low carbon 

steel with high density, strong layer bonds, and without major imperfections. 
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a                                                                       b 

  Figure 5. Cross-section and macro-image of the wall.                 

3.2 Microstructure Characterization  

Figure 6 shows the 3-D representation of the microstructural morphologies in the middle region of the as-deposited 

ER70S-6 low carbon steel wall produced using WAAM. Figure 6 showed the presence of pearlite in ferrite matrix. 

The white regions are ferrite and dark areas are pearlite. The middle region of wall reveals polygonal coarse 

granular structures of ferrite with low volume fraction of pearlite at grain boundaries.  

 

 
Figure 6. 3-D representation of the microstructural in the middle region of wall  

 

This microstructure of low carbon steel with low amount of pearlite also obtained after an arc welding process, 

according to Jafarzadegan et al. [33]. The reduction of pearlite amount is due to the differences in carbon content 

10 mm  

MMm

W

m 

We 

45o- plane X-Y plane 

X-Z plane Y-Z plane 

X 

Y 

Z 

Ferrite 

Pearlite 

Pearlite 

Ferrite 
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and inherent rapid solidification characteristics of the WAAM process [26]. Mechanically, the properties of 

pearlite are in between ductile ferrite and the hard cementite [34]. As result, the low pearlite content AM wall lead 

to reduction of in strength, hardness and ductility as compared to the reference ER70S-6 filler metal and ST-37 

alloy. 

On the other hand, the microstructure of the reference ER70S-6 low carbon steel filler metal presented a regular 

ferrite matrix and pearlite phase, as shown in Figure 7. 

 

 

 
Figure 7. 3-D representation of the microstructural ER70S-6 low filler metal 

 

The ferrite/pearlite ratio is an important microstructural parameter affecting the properties of steel. Unbalanced 

ferrite/ pearlite ratio influences the anisotropy behaviour of mechanical properties, and therefore, investigations 

are required. The ferrite/ pearlite ratio can be measured using a variety of techniques, including point counting 

(PC) and image analysis (IA). IA is a quick method but demands high quality microstructural images and computer 

software packages [36,37]. Top, front and diagonal microstructural images from additively manufactured wall , 

see figure 8, were chosen to determine the ferrite/ pearlite ratio using image analysis approach. The ferrite/ pearlite 

ratio was calculated using ImageJ 1.5j8 image analysis software [29].  

As shown in Figure 8-a, the pearlite fraction in Top plane was 18.45%, whereas Figure 8-b shows that the pearlite 

percentage in the front plane was 16.14%. The pearlite percentage in diagonal plane is 17.76%. These 

microstructural changes, expectedly, changes the mechanical properties. 

 

3.3 Mechanical Characterization 

3.3.1 Hardness Test 

Table 4 presents the values of hardness in three zones of cross-section area: upper, middle and lower zone. Four 

points in each zone, as shown in Figure 3, was measured. In the WAAM’d wall, the lower region shows the higher 

hardness value than the middle and upper regions. The hardness of the constructed materials is found to be 

comparable to that of wrought St 37 steel (approximately 168 HV), which has chemical composition similar to 

ER70S-6 steel [5].    

  

Table 4. Hardness values in three zones 

 Regions  Point 1 Point 2 Point 3 Point 4 Average 

Hardness 

values HV 

Upper  155 160 155 162 158 

Middle  171 165 171 174 170 

Lowe r 185 178 185 182 183 

ER70S-6 -- -- -- -- 198 

 St 37 -- -- -- -- 168 

 

 

 

X 

Y 

Z 
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(a) 

     

(b) 

     

(c) 

Figure 8. Ferrite/pearlite ratio at the middle region of wall: (a) Top plane, (b) front plane , (c) diagonal plane 

 

3.3.2 Tensile Test 

As described in section 2.4.1 and illustrated in Figure 1-c, six tensile tests were conducted, two for each 

orientation. Figure 9 shows fractured samples after tension tests. Table 5 contains the tensile properties of 

examined samples and tensile properties from ER70S-6 steel data sheet [25].  

 

 
Figure 9. Fractured samples after tension tests 

 

Measurement 
Pearlite 

fraction 

Area  18.45 % 

 

Measurement 
Pearlite 

fraction 

Area  16.14 % 

 

Measurement 
Pearlite 

fraction 

Area  17.76 % 
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Table 5. Mechanical properties of the manufactured part 

SN 

Yield 

strength 

(MPa) 

Average 

(MPa) 

Ultimate 

tensile 

strength 

(MPa) 

Average 

(MPa) 

elongation 

(%) 

Average 

(%) 

Vertical 1 398.09 
330.414 

565.61 
501.75 

23 
20 

Vertical 2 262.74 437.90 17 

Horizontal 1 406.05 
414.011 

566.96 
570.14 

20 
25 

Horizontal 2 421.97 573.33 30 

Diagonal 1 473.73 
352.31 

584.79 
543.75 

21 
22 

Diagonal 2 230.89 502.71 23 

ER70S-6  480  560  26 

 

It can be found that the yield strength, ultimate tensile strength, and elongation values of vertical specimens are 

inferior to that of horizontal and diagonal specimens, confirming the anisotropic behaviour on these directions. 

The percentage of anisotropy is calculated by formula (3). [35]:  

 

𝐴𝑝 =  
𝑃2 −𝑃1

𝑃1

                                                             (3) 

 

Where Ap is the anisotropic percentage, P1 and P2 represent the average value of properties of two directions 

respectively. The anisotropic percentages of yield strength, ultimate tensile strength, and elongation respectively 

come to: 

 

▪ 25.30 %, 13.63 %, and 25 %, for the vertical and horizontal samples. 

▪ 6.63 %, 8.37 %, and 10 %, for the vertical and diagonal samples. 

▪ 17.51 %, 4.85 %, and 13.64 %, for the horizontal and diagonal samples. 

 

3.3.3 Impact Test 

Charpy tests have been performed in order to analyse the influence of the bead direction on the impact toughness. 

In the present study, Average values observed in the horizontal direction are similar to the ones observed in the 

diagonal direction and higher than the value in the vertical direction. Table 6 contains the impact toughness of 

examined samples, and Figure 10 shows fractured samples after impact tests.  

 

Table 6. Impact toughness of the manufactured part 

   SN.  
Impact toughness 

(J) 

Average  

(J) 

Vertical 1 153 
138 

Vertical 2 122 

Horizontal 1 150 
151 

Horizontal 2 153 

Diagonal 1 132 
141 

Diagonal 2 150 

ER70S-6 -- 130  

 

The anisotropic percentages of impact toughness come to: 

▪ 9.42 %, for the vertical and horizontal samples. 

▪ 2.17 %, for the vertical and diagonal samples. 
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▪ 7.09 %, for the horizontal and diagonal samples. 

 

 
Figure 10. Fractured samples after impact tests 

 

4. Conclusion 

In this investigation, a low carbon steel wall was fabricated by wire arc additive manufacturing and an analysis 

on its mechanical properties and microstructure was done. The following conclusions can be drawn: 

1. The GMAW-WAAM technique enables the construction of low carbon steel walls with high density and 

minimal defects such cracks and incorrect fusions between layers. 

2. The microstructural of middle region of the as-deposited wall shows polygonal coarse granular structures 

of ferrite with low volume fraction of pearlite at grain boundaries, The pearlite fractions in Top, front 

and diagonal plane were 18.45%, 16.14% and 17.76% respectively. 

3. The values of hardness in three zones of cross-section area: upper, middle and lower zone were 158, 170 

and 185 respectively. 

4. The anisotropic percentages of ultimate tensile strength and impact toughness for the vertical and 

horizontal directions were 13.63 % and 9.42 % respectively, relatively higher than those (4.85 % and 

7.09 %) of horizontal and diagonal directions.   
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