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Abstract:

In this article, the coupled version of the nonlinear (2+1)-dimensional Kundu-Mukherjee-Naskar equation in
fiber bragg gratings was examined. To support the new optical solutions of the coupled form of the nonlinear
(2+1)-dimensional Kundu-Mukherjee-Naskar equation in Fiber Bragg Gratings (FBGSs), three well-known
techniques were used: Periodic Cross-Kink wave, Rogue wave, and Lump interaction with kink and rogue
waves. A novel type of traveling wave solution with interaction phenomena was produced by applying the
proper functions of the solutions. Two and three-dimensional visualizations were used to depict the dynamics of
the created solutions, demonstrating the dependability and effectiveness of the offered methods.
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1. Introduction

Soliton waves occur due to a balance between dispersive and nonlinear effects. Recently, these waves have
emerged in various fields including molecular material science, optics, liquids, plasma, atomic material science,
and astronomy [1-27]. The speed and shape of the solitons remain constant over time. Owing to their
applications, Fiber Bragg Gratings (FBGs) have garnered significant interest from physicists and engineers in
recent years. FBGs are utilized in all-optical communication frameworks, thus they have been undergone
extensively using a variety of assortment of strategies including, the three-wave method, double exponential,
homoclinic breather, M-Shaped rational, M-Shaped with one kink, and M-Shaped with two kink [28], extended
trial function method [29] etc. The study model in this article is a specific sort of NLSE with a particular shape
of non-linearity and scattering terms [32—34].

In this paper, we investigate the Kundu-Mukherjee-Naskar model in FBGs for periodic cross-kink waves,
rogue waves, and lump interaction with kink and rogue waves. The solutions addressed in this paper are novel
because the Kundu-Mukherjee-Naskar model in FBGs has never been studied using the three methods used
here. The extra findings in this paper improve the outcomes reported in reference [28]. The nonlinear (2+1)-
dimensional Kundu-Mukherjee-Naskar model is written out as [32—34]:

Wy + ayy + ibPhy — Y P )Y = 0, (1.1)

Here a, b are constants and ¥ (x,y, t) is a complex-valued function that depicts the wave profile. The symbol
ip(t) represents the linear temporal evolution, the dispersion term consedered by ai,,, the sign for non-
linearity is ib(Yy — Y P, )y, and i = v—1. Following is the initial introduction of coupled vector version of
(L.D)[1]:

i, + a1¢xy + i[(bﬂ/)z + C1¢2)1/); - (d1|1/}|2 + 91|¢|2)¢x] +iog P, + B + (711/)*(1"2 =0,
i + iy + i[(by? + P*) Py — (do|PI* + e2|P|P) Py] + iy s + o + 0P P? = 0,

Here ¢(x,y,t), ¢(x,y,t) are complex functions that depicts the wave profiles and
a;, bj, ¢j, d;, ej, a;, B;, 05, (j = 1,2) are constants. Here a; is a representation of the dispersion terms coefficients.
The variables b;, c;, d;, e;(j = 1,2) serve as a representation of the non-linearity. The variables a;, ;, and g;
represent the inter-modal dispersions, the detuning, and the four-wave mixing respectively. The major goal of
this article is to obtain Multi-waves, Double exponential and interaction phenomena, homoclinic breather
approach, M- Shaped rational solutions, M-Shaped interaction with one kink, and M-Shaped interaction with
two kink for Eq.(1.2). This article is organized as follows: Section 2 introduces the mathematical preliminaries.
We provide the solutions of (1.2) in Sections 3,4,5,6,7, and 8. A few solutions are depicted numerically in
Section 9. The conclusion is illustrated in Section 10.

(1.2)

2. Mathematical preliminaries
The guiding principle for resolving the coupled equation under consideration is provided by

ll)(x' t) =w; (()! (21)
¢(X, t) =Ww; (Z)' (22)

where w;, (j = 1,2) depicts the pulse forms, and
{(x,t) = kyx + kyy — vt, (2.3)
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where k4, k,, and v are non-zero constants.The direct cosines k, and k, denote the inverse soliton widths in the

x and y directions, while v is the soliton speed. By incorporating (2.2) and (2.3) into (1.2) we obtain
arkikowy' + kyw, + oywiws +i((aky —v)wy + ki (by — d)wiwg + ki (c; — e))wiwy) = 0, (2.4)
a2k1k2W£’ + k1W2 + 02W1W22 + l((azkl - V)W]’_ + kl(bz - dz)WfW],_ + kl(CZ - ez)WZZW{) = 0. (2.5)
The result of combining equations (2.4) and (2.5) is

ajkikowi’ + kywy + oywiwi + i((ajky — v)w) + ke (b — dj)wPw] + ky (¢ — e )wiw)) = 0, (2.6)
By applying the balancing principle to the situation where j = 1,2 and [ = 3 — j, we obtainw;, = Aw;, A € R —

{0,1}.

ajk ik, Aw]" + Akyw; + A2ow} + i((ajky — V)W) + ky(b; — d; + A% (¢; — ¢))wfiw)) = 0, 2.7
dividing up into real and imaginary components we obtain:
ajkik,w" + kyw; + Aojw} = 0, (2.8)
equation (2.9) provides us with A = + % and
T
v = ajkq, (2.10)

and the condition (d; — b;)(c; — e;) > 0 is obtained.
w; = 2(Inu),, (2.11)

equation (2.8) is transformed using the log transformation [38], and the result is

ajkyke, (WPuger — uuguer) + (2aik ky + 4Ac))ul + kyutu; = 0. (2.12)

3. Periodic Cross-Kink wave
we study periodic cross-kink wave solutions which contain exponential function, trigonometric function, and
hyprabolic function. setting

u = e+  po e(@3+aO) 4 b, cos(as + ag{) + bs cosh(a, + agl) + ao, (3.2)

where a;(3 < i < 9) and b;(j = 3,4,5) are real parameters. Put u into equation (2.12) and collecting all the
paramameters of e(%3+49) cosh?(a, + ag(), e+ (sinh(a, + ag{)cosh(a, + agl)) ,

e!(@3+a49 sinhi(a, + agl),cosh/(a, + agl),cosh/(a, + agl) sinh(a, + agl), e/ @+ (cosh(a, + agl)),
e/(@+ad (sinh(a, + agl)) for (i = 1,2,3), (j = 1,2), and the powers of {’s. We get system of equations
which gives following values of parameters:

1

Case 1: as = as, b3 = b3’ b4 = b4, b5 = bs, as = ds, Ag = Ag, A7 = Ay, g = Ag, Qg = A9, Ay = —m
ajkik,
andg; = —2—
2A

Putting these constants into (3.1) and then using (2.11), we deduce the solution for equation (1.2) as follows:

For g, = —&fake
L =
2A
1 1
(o) (e
. ( Vzaiks')_ b1, v2aikz'/_q . b, sin(as+agl)+ag bz sinh(ay+agd)
Za]-kz Zajkz
Y(x,y,t) =2 ( 1 () < 1 {) ) (3.2)
(az——L— ag—L
e v2aikzy '/ 1p e v2aikz '/ 1 p, cos(as+agl)+bs cosh(a;+agd)+ao
azkik
For o, = — 2=
2A
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1 1
(o) (o]
L . ( Vzazke'/_ b1, v2azkz’/ _q¢ b, sin(as+agl)+ag by sinh(ay+agd)

Zajkz Zajkz

[ P,y
e 0 2azks +by e " J2azk, +b, cos(as+ag{)+bz cosh(a;+agl)+aq
3-D Periodic cross-kink wave solution Eq (3.2)
- ~ -
-4 -3 -2 -1 0 1 2 3 4
Figure 1: Forb, = 0.1, b3y =2, b, =—-1, bs =0.5, ¢; =0.2,d; =0.2,e; =01, a; = —2,k; =
_055, kz = _09, a3 = 2, a5 = 12, a6 = 25, a7 = 09, a8 = 1, ag = 3, Wlth X € [—4,4],y € [—4,4], and
teo0,2].
1
Case 2 a3 = a3, b1 = bl' bz = bz, b3 = b3, a5 = as, a6 = a6, a7 = a7, ag = ag, ag = ag, a4 = ﬁ
and g; = _dlake
2A
Putting these constants into (3.1) and then using (2.11), we deduce the solution for equation (1.2) as follows:
For g, = —&fake
2A
1 1
L . <a3+‘/za1k2<)+L e<a3+‘/za1k2<)—a6 b, sin(ag+agl)+ag bz sinh(a;+agl)
Zajkz Zaikz

l/)(x,y, t) =2 ( 1 <> ( 1 <>
- PR S
e V' Jzaiks +bye " zaik; +by cos(as+agl)+bz cosh(ar;+agl)+aq

__Gzkik;

For o, = ”
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1 1
(o) b (o)
R S < 2azky’)y b1, 2a2k2"/ _q, b, sin(as+agl)+ag bz sinh(a;+agd)
2a ik 2ajky
J J (3 5)

b0 =2

1 1
tmet)  (ast )
v2azkz'/1p. e v2azk2") 1 b, cos(as+agl)+bs cosh(as+agd)+ay

Case 3. as = ds, bl = bl' b2 = bz, b3 = b3, g = dg, Qg = 0Ag, A7 = Ay, Ag = Ag, g = Ag, Ay = 0
ajk1k2
andg; = ———
2A

Putting these constants into (3.1) and then using (2.11), we deduce the solution for equation (1.2) as follows:

EELILY)
2A

__Qikika

For o, = and o, =

_ _ —ag by sin(as+ag{)+ag bz sinh(a;+agd)
Yy t) = oy, t) =2 e~(@3)+b; (33)+b, cos(as+agl)+bs cosh(as +ag)+ag’ (3.6)

4. Rogue wave

Substituting with

u = (az + a,0)? + (as + ag{)? + my cosh(a, + agd) + a, (4.1

into (2.12) with the help of symbolic accounts having all the coefficients of all powers of cosh(a; +
ag{), sinh(a; + ag{), cosh(a, + ag{) sinh(a, + agl), cosh?(a; + ag{) sinh(a; + ag(), sinh?(a; + agl),
sinh®(a, + ag{) and the power of { we get a system of algebraic equations. By solving the system, we obtain:

.o 1 ’—k1
Case 1 . a3 = a3, a4_ = a4_, a5 = as, a6 = a6, a7 = a7, ag = ag, ml = ml, ag = _E T"" O'} = 0']
J

and k, = —% provided k; (Ao;) < 0 and a;k; # 0.

Putting these constants into (4.1) and then using (2.11), we deduce the solution for equation (1.2) as follows:

1 |-k . 1 |-k
2a4(az+asd)+2a6(as+asd)—; #mlsmh(w—g r‘i()

Y(x,y,t) =2 —— , (4.2)
(az+a40)2+(ag+agl)2+my cosh<a7—5 T‘i(>+ag
2a4(a3+a4{)+2a5(a5+a6{)—% ;—f_;mlsinh<a7—% %{)
$(x,y,t) =2 — (43)
(az+as{)?+(as+ag)?+my cosh(a7—5 ﬁ(>+ag
. 1 [-kq ZAO'I'
Case2: a3 =as, a,=ay, Qs =4ds, Ag = Qg A7 = Ay, Ag = Ao, My =My, Ag == [— and k, = — .
24| Ao; ajkl
provided k;(Ag;) < 0 and a;k, # 0.
Putting these constants into (4.1) and then using (2.11), we deduce the solution for equation (1.2) as follows:
2a4(a3+a4{)+2a6(a5+a6{)+% %’:imlsinh(a7+é ;—’;i{)
Y(xy,t) =2 — , (4.4)
(ag+asd)?+(as+agl)2+my cosh(a7+ T&{)'l'ag
2a4(a3+a4()+2a6(a5+a6{)+% ;—2mlsinh<a7+% %{)
¢(x,y,t) =2 (4.5)

1 |-k
(az+asd)?+(as+agl)2+my cosh(a7+5 ﬁ()ﬂh;
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5 3-D Rogue wave solution Eq (4.4)

le(x.y I

Figure 2: For ¢; = 0.2, d; =0.2,e;, = 0.1, a; = —2,k; = —0.55,k, = —0.9,a, = 0.1,a5; = 2, a, =
—0.52,a5 = 1.2,a4 = 2.5,a;, = 0.9, ag = 3,0, = 0.135, my = 0.5withx € [-4,4],y € [-4,4], andt €
[0,2].

5. Lump interaction with kink and rogue wave

We obtain the solutions of Lump interaction with kink and rogue wave, which consist of the sum of
exponential, quadratic and hyperbolic trigonometry function. We assume the following function

u=(az +a,0)? + (as + ag)? + m,e(@+%) + m, cosh(ay + a;0¢) + a1, (5.1)

where a;, (i = 3,...,11), m; and m, are constants to be determined later. Substituting into (2.12)
with the help of symbolic accounts having all the coefficients of sinhi(aq + a;4¢),cosh’(aq + a;4{),
sinh(ag + a,40) cosh/(ag + a,4{), el(@+as) el @€+ cosh(ag + a;00) el (7*®sinh(ay + a;00),
e (“7$*a8)sinh(aq + a,9{)cosh(ay + a1¢), e 7+ cosh?(ay + a,0¢), for (i = 1,2,3) , (j = 1,2), and the
powers of {’s. We get system of equations which gives following values of parameters:

Case 1: a3 =as, a, =ay, as =0as, g = Ay, A7 = Ay, Ag = dg, Qg = g, My = M4, m, =m,, ayy =

1 [~k _ 2 240 .
-1 A—Uj a;; = —(a +a%),and k, = —?kl’. provided k, (Ao;) < 0 and a;k, # 0.

Putting these constants into (5.1) and then using (2.11), we deduce the solution for equation (1.2) as follows:

1 [Fky ) 1 [Fky
2a4(az+as{)+2ag(as+agd)+agm, e(@7+asd)_ 2\ Aa; M2 Sinh(as=3 |750)
)

Pyt =2 — (52)
(ag+a4)?+(ag+agl)?+mq e(@79+as)ym, cosh(ag—3 A—gi{)+a11
2a4(az+as)+2ag(as+agl)+agmy e(a7+“80—% ;—?mz sinh(ag—% %{)
d(x,y,t) =2 2 2 (5.3)

1 |-k
(az+asQ)2+(as+aed)?+my e(@78+8)+m; cosh(ag— ﬁ{ﬁau
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3-D Lump interaction with kink and rogue solution Eq (5.2)

4
2
0
2
1
0 4 -3 2 1 0 1 2 3

t

.y

Iy

x

Figure 3: Forb; = 0.2, ¢; =0.2,d, =0.2,e;, =01, ay = =2,k; = —0.55, a;, =0.1,a3 =2, a, =
—0.52,a; =1.2,a4 =2.5,a;, = 2, ag = —0.52,a9 = 0.9, 0; = 0.135, m; =2, m, = 0.5 withx €
[-4,4],y € [—4,4],and t € [0, 2].

Case 2: t a3 =a3, a, =ay, Gs = ag, Ag = Ag, A7 = A7, Qg = Ag, Qg = g, My = My, m, =m,, a9 =
1 |-k 2A0; .
E A—Jl a;; = —(a +a3),and k, = —a—k’. provided k; (Ao;) < 0 and a;k; # 0.

J j*1

Putting these constants into (5.1) and then using (2.11), we deduce the solution for equation (1.2) as follows:

1 [—kq . 1 [—kq
2a4(az+asd)+2a¢(as+agd)+agmy e(a7+a80+2 Ao, Mz Sinh(ag+ 3 |72-0)

Y(x,y,t) =2 = : (5.4)
(az+a,{)?+(as+ag)?+m, e(@79+asg) 1 m, cosh(ag+3 T‘i()ﬂlll
2a4(az+asd)+2ag(as+acgl)+agm; e(a7+a80+% ;—f_l my sinh(ag—% %{)
d(x,y,t) =2 2 2 (5.5)

1 |-k
(az+asQ)2+(as+agd)2+my e(478+a8)+m; cosh(ag+ ﬁ{)ﬂlll

6. Numerical simulation

In this section, we investigate the coupled form of the nonlinear (2+1)-dimensional Kundu-Mukherjee-Naskar
equation in fiber bragg gratings for Periodic Cross-Kink solutions, Rogue solutions, and Lump interaction with
kink and rogue solutions using the log transformation (2.11). Utilizing the proper functions of the solutions
yields Periodic Cross-Kink solutions Egs.(3.2 — 3.6), Rogue solutions Eqgs.(4.2 — 4.5), and Lump interaction
with kink and rogue solutions Egs.(5.2 — 5.5). Figs. 1 represents (2&3)-D Periodic Cross-Kink soliton solutions.
Figs. 2 represents (2&3)-D Rogue (kink-bright-dark)soliton solutions. Figs. 3 illustrate (2&3)-D Lump
interaction with kink and rogue (kink-bright-dark)soliton solutions.
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7. Conclusion
In this study, we retrieved new optical solutions for the nonlinear (2+1)-dimensional Kundu-Mukherjee-Naskar
equation in Fiber Bragg Gratings using three effective techniques: Periodic Cross-Kink wave, Rogue wave, and
Lump interaction with Kink and rogue waves. New Periodic Cross-Kink soliton solutions, Rogue (kink-bright-
dark) soliton solutions, and lump interaction with kink and rogue (kink-bright-dark) soliton solutions were
extracted. Visual representations of the solutions were also included. To the best of our knowledge, this study is
the first to identify the outcomes of this model.
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