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Abstract:

The story of industrial optimization centers around advances in reducing waste generation and lowering costs.
Any industrial institution needs to constantly optimize their production processes in order to gain competitive
advantage over its competitors in the industry. One of the challenges manufacturing is to monitor and minimize
the gradual failure of cutting tools. The remaining useful life (RUL) of a cutting tool must be used carefully to
ensure precision of surface finish, since tool wear can cause damage to cutting tool and scraping machined.

This paper presents a research project to monitor and optimize the life of the cutting tool during turning process.
Machine tool data was collected from sets of experiments to estimate parameters of the modified Taylor’s
equation using the Levenberg-Marquardt (LM) non-linear least squares algorithm. The LM nonlinear results are
used as data structure for a proposed machine learning model to alarm the factory to replace tool before reaching
the end of life. In this study, the LM nonlinear estimation results were compared to linear least squares solutions
of the linearized form of the extended Taylor equation. The LM nonlinear least squares model showed better
fitting results. In this study, the cutting tool temperature is also recommended as other techniques to teach machine
to monitor the RUL cutting tools.

Keywords: Optimal tool life, Levenberg-Marquardt algorithm, Nonlinear optimization, Machine learning,
Cutting tool temperature.
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Introduction

Optimizing the material removal process is one of the most searched topics in manufacturing literatures [1-2]. In
most manufacturing industry, efforts are given to look for optimizing cost and quality of products. Recent
improvements in engineering design were achieved with machine learning by building computer systems that
learn from data [3]. Using artificial intelligence to monitor tool life makes computer copy human intelligent to
inspect and improve the production processes [4-6]. Where artificial intelligence can be defined as: “an area of
study concerned with making computers copy intelligent human behavior” [7]. The goal of using artificial
intelligence (Al) in machining is to train computer to extend tool life so that no need for human inspection of the
end of the tool life. In most moderate automated machinery, optimizing material removal process are made by
modelling machine learning algorithms for machines to completely rely on itself to monitor the optimal cutting
parameters to insure long tool life. Sara et al. [8] proposed a machine learning method to find an algorithm to
estimate the tool life in different turning conditions when machining small lots where parts and materials are
changed constantly. They conclude that depending on the availability of historical data of similar production, the
tool life can be estimated using Bayesian method. However, when only features, properties and condition data are
available, the extended Taylor equation is used to estimate tool life. They also concluded that when no relevant
data, it is not possible to estimate tool life. Each ML model requires the use of image processing, or sound sensor,
or optical sensor, or vibration sensors, or radiation sensor, or ultrasonic sensors [9]. Liu et al. [9] predicted tool
life of milling cutters by sound. They used Mel-Frequency Cepstral Coefficients (MFCC) to extract audio signals
for the tool life model, then a Deep Neural Network (DNN) was used to build a relationship between the recorded
audio and the tool life, and then define the audio signal corresponding to the end of tool life. Deep Neural Networks
are useful in speech recognition [ 10 — 12] and are also commonly used in life cycle prediction models for machines
and tools [9]. Al-Ahmari et al. [13] formulated an optimization model to predict three machining functions (tool
life, cutting force and surface roughness), during turning process of austenitic AISI 302. They estimated
machining functions using multiple linear regression analysis techniques (RA), response surface methodology
(RSM), and computational neural networks (CNN). They have concluded that the CNN model was better than
RA and RSM models in detecting machining functions. However, RSM model performed better in estimating tool
life and cutting force compared to RA model. Bazaz et al. [14] used dimensional analysis to estimate the tool life
in the metal cutting turning process for small-lot production by considering the effects of cutting speed, feed rate,
depth of cut, workpiece hardness, tool hardness, cutting force, and cutting temperature. These parameters were
extracted from a literature review of 101 published references from 2000 to 2022. They established a relationship
matrix from the investigated literature review which demonstrates 29 parameters affecting 23 factors that directly
or indirectly effected tool life. The relationship matrix demonstrates 29 parameters affecting 23 factors which
directly or indirectly influence tool life, these factors affecting the tool life are illustrated by their weights on the
graph. They also concluded that these relationships could be used to develop a production plan that use the
optimized tool life in small-lot production to estimate tool life, including artificial intelligence development, big
data analysis, and digital twins. Robin [15] proposed a machine learning model includes recording of the torque
data and tool life measurements. The torque data is recorded for different time spans. The cutting tool is removed
from the machine and a spare tool installed to prevent production interruption and to measure tool life for each
time span. The procedure may be repeated until the end of tool life. Then a software code is written to implements
the machine learning algorithm, transfers the data, trains the ML model and generates the tool life predictions.
They predict tool life of a drilling tool to produce hydraulic valves where torque measured by a numerical control
(NC). The torque values of the spindle were collected with a frequency of 1,000Hz for each tool until reaching
the end of the tool life. After measuring the mechanical torque, it is required to measure the cutting-edge
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displacement of the used tool with a three-dimensional image capture and evaluate the image by an expert. These
measurements can be stored in a matrix where row equals to measurements, and column equal to torque values of
1 millisecond or displacements).

It is possible to use human inspection (human learning models) to predict tool life to ensure accuracy of a cutting
machine and the finished product precision. This method is used to identify problems early and predict the end of
the tool life (ETL) of a machine to prevent machining downtime and to utilize the maximum life of the cutting
tool. The human learning models are based on mathematical models and the experimental analysis of behaviour
[16-17] to accurately predict the remaining useful life (RUL or ETL) of a cutting tool and parameters influencing
the RUL or ETL. Some of these attempts to use human learning models are summarized here, Zhang et al [18]
modelled tool life (ETL) for high-speed ultrasonic vibration cutting (HUVC) of Ti and Ni alloys based on the
extended Taylor’s equation. They concluded that both the separation condition and effective cooling influenced
the tool life and that the cutting temperature reduced as result of cooling condition during separation process.
They also specify limit of cooling pressure and duty cycle for Ti and Ni alloys, and suggested to consider the
impact effect due to the tool-workpiece separation. Prince et al. [19] conducted wet-turning experiment to estimate
the tool life of coated carbide insert in a CNC lathe machine to cut stainless steel SS316L. The tool life (ETL)
was estimated using industrial and theoretical method (Taylor’s tool life Equation). Theoretical method can be
successfully implemented to estimate the tool life to save operator time and machining cost. They found that the
Flank wear and brittle wear are the most common cause of tool failure. Kumar et al. [20] studied the tool life
(ETL) and its failure mechanism. They concluded that the geometry of a cutting tool, cutting parameters, and the
machining condition (dry or wet) influence tool life, meanwhile, the optimum values of rake and clearance angles
are -50 to +100 and 50 to +80 respectively. They also concluded that tool failure increased under the influence of
high thermal stresses, wear and mechanical forces.

In this paper, sound inspection is used to precisely detect the end of tool life (ETL). Then an algorithm is used
based on nonlinear optimization (LM nonlinear least squares algorithm) to estimate parameters of the modified
Taylor’s equation. The modified Taylor’s equation is a relationship relates the Tool life to cutting parameters
(Cutting speed, Feed rate, and Depth of cut). This ML model will estimate end of tool life based on the learning
process from sound inspection experiments of tool life. The learning process teach the computer to use the right
parameters of the extended Taylor equations so that computer chose an optimal cutting parameters and alarms to
stop the cutting machine to allow operators to replace the tool and prevent damage in time.

Predictive maintenance models & sensing methods

Predictive maintenance models (PM models) use analytics to estimate the RUL or ETL of a tool. The basic
principle of PM models is to perform prediction and analyze the collected signals from sensors. Commonly used
PM methods are statistical failure knowledge models, physics-based model (Mathematical models), and data-
driven models (Data collected using sensors), figure 1 [21] shows the three predictive maintenance models.
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Figure 1: Predictive maintenance models [21]

The commonly used end of tool life monitoring techniques for data-driven predictive maintenance are direct
monitoring and indirect monitoring. Where, direct sensing methods include microscope, lasers, cameras, Charge-
Coupled Device cameras, laser, ultra-sonic sensors. While in-direct methods bring indirect information about the
end of tool life from measurements of cutting forces (dynamometer), vibration (accelerometer), temperature,
sound (microphone), current/power, acoustic emissions. Figure 2 [21] shows the direct and indirect methods.
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Figure 2: Sensing methods [21]

Case study: Carbide tip-KC5525 cutting tool

To demonstrate the process of machine learning and human learning models, a carbide tip-KC5525 cutting tool
was used to collect the end of tool life during different designed cutting parameters. These data are going to be
used to teach human being or a machine to prevent sudden production downtime. In this study, the material used
for conducting experiments is C45 mild carbide steel. The experiment was carried out on lathe machine on the
cylindrical workpiece mild steel (57 mm diameter and 500 mm length) with carbide tool and the end of tool life
was measured by observing an abnormal change in the pitch of sound from the cutting tool. The experiments were
conducted according to the Taguchi design of experiment as per Table-1. The results of 27 tests are shown in
table-2. A 33 factorial design was used to study influence of the cutting parameters on the end of tool life Table
1, shows the three controlling parameters (cutting parameters).

Table 1 The procedure of the experiments.

Cutting parameters Level-1 Level-2 Level-3
Speed of cut (V) m/min 92.68 122.83 155.63
Feed rate (F) mm/rev 0.09 0.18 0.36

Cutting Depth (D) mm 0.3 0.5 0.8

Experiments have been conducted at three different cutting speeds by varying the other two cutting parameters
for each cutting speed. At each cutting speed, three feed rates were performed and at each of them three depths of
cuts have been implemented. That makes 27 tests organized in table 1 and at each test, the end of tool life was
measured by detecting the changes in the sound emitted from the operation.

Mathematical Model of the Tool life
Taylor has proposed a relationship between tool life, cutting velocity, (V), feed rate (F) and Cutting depth (D).
The extended Taylor tool life [22] which defined as

VT'F™DK = ¢ 1

Where, TL is the end of tool life in minutes, C is a constant effected by both the used cutting tool and the
workpiece. The tool life exponents are n, m, and k influenced by the used tool, workpiece and the environment of
the machine.

102 | African Journal of Advanced Pure and Applied Sciences (AJAPAS)



Tool Life Parameter Estimation by Non-Linear Least Squares

The Levenberg-Marquardt algorithm is used to solve nonlinear extended Taylor equation by fitting a
parameterized extended Taylor equation (model function) to a set of tool life data points by minimizing an
objective function as the sum of the squares of the residual between the model function and a set of tool life data
points. The least squares problem requires an iterative solution algorithm, because of the nonlinearity in
parameters of the fitted function. The Levenberg-Marquardt algorithm combines the gradient descent method and
the Gauss-Newton method. Where the gradient descent method updates the parameters in the steepest-descent
direction to reduce the sum of the squared residuals.

Whoever the Gauss-Newton method helps to reduce the sum of the squared residuals by the least squares function
which is locally quadratic in the parameters, and to find the minimum of this quadratic function. The Levenberg-
Marquardt method replaces a gradient-descent

method when the parameters are far from the corresponding optimal value, and replaces the Gauss-Newton
method when the parameters are close to the corresponding optimal value. The object function (Equation 5 & 6)
is obtained by manipulating the Extended Taylor equation:

Y
C n
f=ETL-T,=T,(V,F,D) - T, Z[W] = Tn (2)
Ydata

More general form:

Yn @)

— — 3
Z4,29,23) =
f (21,23, 23) [21 " Zé‘] YVdata

The unknown parameters are C, n, m and k, measurements are organized in the following form

([21 22 Z3)1, Yaatay)» (21 22 Z3)2) Vaatay)s -+ ([21 Z2 Z3]n, Vaara,) - Then specifying an initial guess of the
unknown parameters Co, Ng, Mo and ko and evaluate f at ( [z, z, 2314, [21 22 2Z3]5, -e -+, [21 25 23], ) @nd the
calculating residuals. From there we can update the unknown parameters C, n, m and k to make the
mathematical model converges to the measured data. By repeating this cycle of evaluation,, then optimal
parameters are obtained by minimizing the sum of squared errors between function f and the measured end of
tool life.

n
] e *

The Levenberg-Marquardt is used to find the minimum of a function f(x) as a sum of squares of nonlinear
functions.

m
1 1

F(21,23,23,24) = EZ[f(xi)]z = E(f1(2i)2 + f2(z)% + - + fu(2)?) ®)

i=1
Initial guess of the unknown parameters: ©)

[29,22,22,29] =[100,0.1,0.1,0.1]
Subject to the constraints

LB UB (7)

[20,0.1,0.1,0.1] < [2y, 25, 2, 74] < [150,0.9,0.9,0.9]

The LM algorithm requires calculating the Jacobian of all the first derivatives
the vector. The Jacobian of the vector f is given by the matrix
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The proposed machine learning procedures

The proposed ML model uses indirect sensing technique (sound) to build tool life mathematical model based on
the extended nonlinear Taylor equation. The proposed model was tested for the case of Carbide tip-KC5525
cutting tool. The LM nonlinear detection model can be used to estimate the exponents of the extended Taylor
equation tool life of different cutting tools used in the same Machine. The proposed ML model include library of
all studied types of cutting tools. A user can select a type of tool so that library provides the right estimated
exponents of the extended Taylor equation. Then the user can apply selected cutting parameters (V, F, and D) to
predict the RUL or the ETL. By calculating the duration for which the tool was running (DTR), it is possible to
get the RUL from equation 9.

RUL (V' F,D, TOOIType) = ETL(nToolType » MToolTypes kToolTypet CToolType)_ DTR (9)

An Arduino-based alarm system is used to display the RUL and if possible, to alarm users for the RUL. A sample
of each experimented tool type can be arranged in a struct as in table 2, then saved into a library for use in the ML
model.

| Data from experiments #ﬂ Mathematical model (Nonlinear LM model) | -

my ks Cs 3

g g g 5:, g §:‘ Machine Learning Library for N types of tools

3 3 3 3 3 3

; O~ WQ ; cm = "ToolTvpe mToolType kToolType CToolTypg ToolType
n
n, m, k, C, 2

I
I
my ky G 1 i
|
I

Alarm system controlled by Arduino

Figure 3: The proposed machine learning model.
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Table 2 The ETL library for three cutting tools.
% MATLAB code shows how to add tool’s data to the ML structure (Library) %
Tools = struct ('const_C', [Ci, Cp, C3],
"exp_ N', [n1, nz, n3], ‘exp M', [mi, my, ms],
"expK', [ki, k2, ks], ‘names', char ('ToolType-1', 'ToolType-2', 'ToolType-3'));

Tools.names

%Tools.names(4)="Tool-4"; % To add new tools

Tools.names

% Saving Tools info in a file

save ('data.mat', '-struct', 'Tools');

% Creating a library for teaching the machine to monitor the RUT
ToollLibrary = load('data.mat"');

ToollLibrary.names % names of tools from the created library

The schematic of the Levenberg-Marquardt algorithm to predict the end of tool life is summarized in table 3. The
LM algorithm is a human leaning model which can be transferred to the ML model as well.

Table 3 A schematic of the LM optimization algorithm for predicting end of tool life.

%% nonlinear least square using Levenberg-Marquardt algorithm
clear all; close all; clc;
%% generating vectors of the controlling parameter

V (1: N) = [V1 Vy ... Vn]; % Applied Speed of cut vector
F (1: N) = [F1 Fy ... Fn]; % Applied Feed rate vector
D (1: N) = [D1 Dy Dn]; % Applied Depth of cut vector

T (1: N) = [T1 T2 .. Tn]; % measured Tool life vector

%% initialization of variables

n_init = 0.1; m_init = 0.1; k_init = 0.1; c_init = 10.0;

%% Objective function

f_new = y_data - power (c_init./ (V.* power (F, m_init). * power(D,k_init) ),1 ./n_init) ;
%% loop for LM nonlinear optimization

for i = 2:max_iter % loop for LM nonlinear optimization

%% Here Levenberg-Marquardt algorithm

End

Results and discussion

In Fig. 4, the predicted and the experimental end of tool life values are plotted on the y-axis, while the 27th
experimental samples are plotted on the x-axis. The LM nonlinear model showed better accuracy in detecting
experimental end of tool life (ETL) compared to the linear least squares [23]. Table 4 includes end of tool life
equations for (a) non-linear least squares (LM model) (b) linear least squares (Solving system of linear equations)
[23].
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Figure 4: Estimated versus measured Tool Life.
(a) Optimizing of nonlinear objective function by the LM-nonlinear least squares
(b) Solving system of linear equations using Linear least squares
Table 4 Mathematical models of nonlinear & linear least squares.
Linear least squares (Linearizing & solving Nonlinear least squares (Levenberg-Marquardt)
system of linear equations)
74 T2.52007 F0.25472 D0.92316 —=87.1856 1% T£.60061 F0.24-634- D0.77929 = 118.3776

The RUL of the studied case (Carbide cutting tool inserts) can be calculated from the estimated ETL (TL) using
equation 9.

RUL (V, F, D, Carbide tip — KC5525 ) = ETL - DTR = T, (V, F, D) — DTR

1183776 1 /00061 )
- [V F0.24634 )0.77929 —DTR

Fig. 5, shows 3D-search for optimal tool life exponents (n, m, k and C) using the LM model. It is clear that errors
have been reduced when optimal exponents were reached.
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Figure 5: Illustration of minimizing errors during nonlinear least squares optimization between
Mathematical model and experimental ETL measurements.
Figure (6) shows the end of tool Life results from experiments on Carbide insert tool during the selected controlled
cutting parameters from table 1. The magenta circle-ball dotted curve performed at 92.68 m/min and three cutting
depths of 0.3, 0.5 and 0.8 mm. The green triangles line curve for speed of cut of 122.83 m/min plotted for the
three cutting depths, while the black square-dashed curve for speed of cut of 155.63 m/min are plotted for the
same three cutting depths.
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Figure 6: The effects of cutting parameters (V, F, and D) on the end of tool life ETL.

Figure 7 shows the approximated cutting temperatures based on Nathan Cook equation [14] for turning machine.
Here we try to chick whether our machine learning model could benefit from connecting the end of tool life with
the cutting tool temperature. Fig. 7 (a) and (b) conclude that when cutting speed was kept constant while depth of
cut (D) changed from 0.3 mm to 0.8 mm, the tool temperature has been increased by 200 Co. However, tool
temperature was increased by 100 CO as cutting speed changed from 92.68 m/min to 122.83 m/min. Temperature
behavior with respect to the end of tool life clarified by Fig. 8 where increasing cutting tool temperature causes
finishing life of the cutting tool earlier. Therefore, it is recommended to try to use temperature sensor to teach the

proposed machine learning model to detect the RUL of cutting tools. That will be our next project.
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Figure 7: The approximated temperature rises of the cutting tool based on the Nathan Cook model versus
cutting parameters.
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Figure 8: The approximated temperature rises of the cutting tool versus end of tool life.

Conclusion

The LM nonlinear algorithm was used as physics-based model (Mathematical models) to predict the RUL from
sound signals of the ETL-measurements. The Mathematical model and the sensing technique are used inside the
proposed machine learning model to alarm for the necessary tool replacement. An experimental-case study was
conducted in the turning of C45 steel workpiece under dry condition using Carbide cutting tool inserts. This case
study is used as an example of how to bult the machine learning library. The criteria of detecting the end of tool
life (ETL) are based on a mathematical model which is obtained by solving the extended Taylor equation. There
are two ways to solve the extended Taylor equation which are either by solving system of linear equations using
linear least squares [23] or by solving the nonlinear optimization problem using LM nonlinear least squares. In
this research study, the two solutions were compared using turning of C45 steel workpiece experiments. The
nonlinear optimization solution {LM model) was better in fitting the experimental ETL data and in estimating the
exponents of the Extended Taylor equation (n, m, k, C), compared to the solution of the system of linear equations
(Linearized extended Taylor equation) [23]. Therefore, it is recommended to use the LM model to predict the end
of tool life for the proposed machine learning model to get the RUL. This study recommends to use the cutting
tool temperature for teaching turning machine by using signals from thermocouples to monitor the RUL cutting
tools. That will be the next project.
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