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Abstract

An exact one-dimensional finite beam element for extensional-bending coupled vibration analyses for
antisymmetric composite laminated beams under various harmonic axial bending forces is developed in this
study. The dynamic coupled equations and related boundary conditions are derived from Hamilton’s variational
principle. The formulation is based on Timoshenko beam theory and accounts for the effects of shear deformation
caused by bending and translational and rotary inertia. It is also captured the effects of Poisson’s ratio and
structural extensional-bending coupling coming from composite material anisotropy. From the resulting coupled
field equations, the closed form solutions are exactly obtained. A set of shape functions is then developed based
on the exact solutions of the coupled equations and is utilized to formulate a finite beam element. The new beam
element has two nodes with six degrees of freedom per node and successfully captures the coupled extensional-
bending static and steady-state dynamic responses of antisymmetric composite laminate beams under harmonic
forces. Several examples are performed for antisymmetric cross-ply and angle-ply laminated composite beams to
investigate the effects of transverse shear deformation, and fiber orientation angle on coupled natural frequencies,
quasi-static and steady state dynamic responses. Results based on the present finite element formulation are
assessed and validated against other well-established finite element and exact solutions available in the literature.
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1. Introduction

Composite laminated beams are experiencing growing utilization across diverse engineering applications owing
to their impressive strength-to-weight and stiffness-to-weight ratios. Multilayered composite beams have found
widespread use in aerospace, mechanical, and civil engineering. They serve as vital structural components in
various applications such as aircraft wings, fuselage structures, helicopter blades, vehicle axles, propellant and
turbine blades, as well as ship and marine structural frames, thanks to their outstanding features.

In various engineering applications, composite laminated beams often subjected to cyclic dynamic
loading, such as harmonic excitations, arising from factors such as aerodynamic effects, hydrodynamic wave
motion, wind loading, and imbalances in rotating or reciprocating machinery. These cyclic forces induce
undesirable vibrations in composite laminated beams, they making them prone to fatigue failures. Consequently,
fatigue failure considerations have gained significant importance in the design of composite laminated structural
members. When subjected to harmonic forces, the transient component of dynamic response initially dominates
but rapidly dampens out, thus having little importance in evaluating fatigue life. Conversely, the steady-state
dynamic response is continued for a long term and is critical for evaluating fatigue life, and is the main focus of
the present study. Thus, the study aims to develop an efficient finite beam element solution capable of isolating
and capturing the steady-state dynamic response. Moreover, the present finite element solution is able to capture
the quasi-static response and predict the eigen-frequencies and eigen-modes of the composite antisymmetric
laminated beams.

2. Literature Review on Finite Element Formulations

While dynamic analysis of composite laminated antisymmetric beams using various beam theories has been
extensively researched in recent years, many of these studies have focused only on the free vibrations of such
composite beams. Numerous investigations have developed and examined the analytical exact solutions and finite
element techniques specifically for the free vibration response of composite symmetric and antisymmetric
laminated beams. But in this study, the literature review is focused only on the finite element solutions.

In general, the finite element solutions are based on three types of shape functions: (1) approximate polynomial
interpolation functions, (2) shape functions based on the exact solution of the static equilibrium equations, and (3)
shape functions based on the exact solution of the dynamic equations of motion. Finite element formulations based
on the approximate shape functions are most common and are included in the works of Chandrashekhara and
Bangera [1], Nabi and Ganesan [2], Bassiouni, etal. [3], Raveendranath, etal. [4], Palanivel [5], Vo and Inam [6],
Elshafei [7], Vo etal. [8], Elmardi etal. [9], Talekara and Kotambkar [10], Horta etal. [11], and Kashani and
Hashemi [12]. Based on higher-order shear deformation theory, Chandrashekhara and Bangera [1] used the
conventional finite element to analyze the free vibration behavior of laminated composite beams by considering
the effects of rotary inertia, Poisson’s effect, and coupled extensional and bending deformations. Based on first-
order shear deformation, Nabi and Ganesan [2] developed a finite element model to study the free vibration
characteristics of composite laminated beams including the effects of shear deformation and bi-axial bending and
torsion. Bassiouni, etal. [3] presented a finite element model to investigate the natural frequencies and mode
shapes of laminated composite beams. Raveendranath, etal. [4] analyzed the composite laminated beams using a
two-noded curved composite beam element with three degrees of freedom per node. The formulation incorporated
Poisson’s effect and the coupled flexural and extensional deformations together with transverse shear deformation.
Palanivel [5] developed a two-noded C* finite element of eight degrees of freedom per node for flexural analysis
of symmetric composite laminated beams. Vo and Inam [6] developed a two-noded C? finite beam element with
five degrees of freedom per node to study the free vibration and buckling analyses of composite cross-ply
laminated beams by using the refined shear deformation theory. Their formulations account for the parabolical
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variation of the shear strains through the beam depth and all coupling coming from the material anisotropy.
Elshafei [7] developed a finite element model based on the first order shear deformation theory to predict the static
and free vibration analyses for isotropic and orthotropic beams with different boundary conditions and length-to-
thickness ratios. Vo etal. [8] presented a finite element model based on sinusoidal shear deformation theory to
study the free vibration and buckling of composite laminated beams with arbitrary lay-ups. They developed a two-
noded C* beam element with five degree-of-freedom per node which accounts for shear deformation effects and
all coupling effects coming from the material anisotropy. Elmardi etal. [9] formulated a finite element model to
predict the free vibration characteristic of symmetric and antisymmetric layered composite beams. In their
formulation, the effects of transverse shear deformation and rotary inertia were included. Talekara and Kotambkar
(2020) developed a finite element model based on first order shear deformation theory to analyze the free vibration
characteristic of the anisotropic composite beam. In their formulation, the effects of Poisson ratio, slenderness
ratio, material anisotropy, lay-up angle and boundary conditions on the natural frequencies of laminated composite
beams were investigated. Recently, Horta etal. [11] investigated the free vibration analysis of laminated composite
beams using the finite element method, in which the two-noded Timoshenko beam element model formulated via
strain gradient. More recently, based on finite element method with dynamic finite element techniques, Kashani
and Hashemi [12] presented the free coupled bending-torsion vibration analysis of prestressed composite
laminated beams subjected to static axial force and end moment. A feature common to the above finite element
studies is use of approximate shape functions involving spatial discretization errors, and thus requiring fine meshes
to converge to the actual solution.

Finite element solutions based on the exact solution of static equilibrium equations, include the words of
Chakraborty et al. [13], Murthy et al. [14], and Hjaji etal. [15]. Based on the first order shear deformation theory,
Chakraborty et al. [13] used the finite element to analyzed the free vibration and wave propagation in composite
laminated beams having symmetric and asymmetric ply stacking. Based on higher-order shear deformation theory,
Murthy et al. [14] formulated a refined two-node beam element for the axial-flexural-shear coupled vibration
analysis in asymmetrically stacked composite beams. In their formulation, the shape functions used in the finite
element are satisfied the static equilibrium governing equations. Hjaji etal. [15] developed a super-convergent
finite beam element for open thin-walled beams with doubly symmetric cross-sections subjected to various
twisting and warping moments. The proposed two-noded beam element having four degrees of freedom is based
on shape functions which exactly satisfy the solution of the static equilibrium field equations. The formulation
accounts for the shear deformation effects arising from warping and captures the torsional-warping coupled
response of open thin-walled beams. Solutions based on the exact solution for static equilibrium equations have
the advantage of avoiding locking problems, which could arise in some of the solutions based on polynomial
interpolation.

Formulations based on the exact solution of the dynamic equations of motion include the works of Hjaji etal. [16,
17, 18, 19]. Hjaji etal. [16] formulated an exact finite beam element to investigate the dynamic analysis of torsional
vibration of shafts under various harmonic twisting moments. The beam element developed has two-nodes with
four degree of freedom is based on exact shape functions. A super-convergent finite beam element for the dynamic
flexural response of symmetric laminated composite beams subjected to various harmonic bending forces is
developed by Hijaji etal. [17]. Based on the assumptions of Timoshenko beam theory, a one-dimensional finite
beam element with two-nodes and four degrees of freedom per element based on the exact shape functions is
investigated. The new beam element is applicable to symmetric laminated composite beams and accounts for the
effects of shear deformation, rotary inertia, Poison’s ratio and fiber orientations. Recently, Hjaji etal. [18]
developed an efficient finite beam element formulation for investigating the dynamic analysis of axially preloaded
Euler-Bernoulli beams under harmonic bending excitations. The new finite beam element derived based on the
shape functions exactly satisfy the solution of the governing bending field equation. More recently, Hjaji etal. [19]
formulated an accurate and efficient finite beam element that depends on the exact shape torsional and warping
deformation functions which exactly satisfied the solution of the governing coupled equations for open thin-walled
beams with doubly symmetric cross-sections under various harmonic torsional and warping moments. The
proposed beam element developed captures the effects of shear deformation due to non-uniform torsion, warping
deformation and rotary inertial effects. The finite beam element solutions developed by Hjaji etal. [16, 17, 18, and
19] based on the exact solution of the dynamic equations of motion offer the following two advantages: (1) they
eliminate discretization errors arising in conventional interpolation schemes and converge to the solution using a
minimal number of degrees of freedom; and (2) they lead to beam elements that are free from shear locking.

Though a large number of finite element solutions studies dealing with the dynamic analysis of composite
laminated beams are developed, it should be noted that no work is reported in the literature on dynamic analysis
of antisymmetric laminated composite beams under various harmonic axial and bending forces using finite beam
element formulation based on exact shape functions which exactly satisfy the solution of the dynamic equations
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of motion. Thus, the aim of the present study is to develop such an efficient finite beam element solution based
on the exact solutions. The formulation developed is accounts for the shear deformation effects caused by bending,
translational and rotary inertias, Poison’s ratio, fiber orientation, and extensional-bending coupling effects arising
from the asymmetry of the cross section.

3. Kinematic Functions

A prismatic composite laminated beam having length L, thickness h and width b is considered as shown in Fig.
(1). In the right-handed Cartesian coordinate system (X, Y, Z) defined on the mid-plane of the composite beam,
the X axis aligns with the beam coordinate, Yand Z align with the principal axes of the cross-section. Since the
cross-section of the composite beam have two axes of symmetry (i.e., Y and Z), therefore, the coupling between
bending and torsion responses due to the section hon-symmetry is disregarded. Consequently, the present study
focused solely on the flexural behaviour in the X — Z plane. Then, the displacement functions for a general point
p(x, z) of height z from the centroidal axis of composite beam based on the first order shear deformation theory
are assumed to take the following form:

uy(x,z,t) =ulx,t) +z ¢y, vp(x,z,t) =0, and wy(x,zt) =w(x,t) (1-3)
in which u(x, t) and w(x, t) are the axial and transverse displacements of a point on the mid-plane in the X and
Z directions, u, (x, z, t) and w, (x, z, t) are the axial and transverse displacement, respectively, v, (x, z, t) is the

lateral displacement, and ¢, (x, t) is the rotation of the normal to the mid-plane about the Yaxis, where x and t
are spanwise coordinate and time, respectively.

z

Figure (1): A composite laminated beam.
The normal and transverse strains of the composite laminated beam, as associated with the small-displacement
theory of elasticity, are given as:
& 20U, /0x =& +2zk,, and Y, = 0w, /0x + ¢, 4)
where &,, = du/dx = u’ is the mid-plane axial strain, k, = d¢,/dx = ¢, is the bending curvature, and the

primes denote the differentiation with respect to x.
The laminated beam constitutive equations based on the first order shear deformation theory can be obtained by

using the classical lamination theory to give:

Ny Ayn Az A Biy Biz By Exo

Ny A, Az Aze Bz Byy By Eyo

Ny _ Aje Aze Aes Bis Bis Bes Yy )
M, Bi1 By 316 Dy Dy, D16 kx

M, Bi, By Bye D1z Dy Dy ky

My, x1 Bie Bas Bes Die Dizs Deelgyg \Kxy 6x1

where N,, N, and N,,, are the in-plane normal and shear forces, M,, N,, and M,,, are the bending and twisting
moments, £,,, £y, and y,,, are the mid-plane normal and shear strains, k,, k, and k., are the bending and twisting
curvatures, respectively, A;j, B;j and D;; denote the extensional, bending-extensional coupling and bending

stiffnesses, respectively, and are expressed as functions of laminate ply orientation g and material properties as:
n/2 = ..

Ay, By, Dy = [ /Z[Qi,.] (1,z,z%) dz , (fori,j=1,2,6) (6)

where Q; ; are the transformed reduced stiffnesses and are given by the following expressions [12]:

Q11 = Q11 ¢* + 2(Q12 +2Qg6) 5*°c® + Q2p 5%, Q12 = (Qu1 + Qa2 — 4Q66) S°C*+ Qa(s* +¢*)
Q22 = Q11 5* +2(Q12 + 2Q¢6) 5°c® + Qzp ¢*, Q16 = (Q11 — Q12 — 2Q66) 5 € + (Q1 — Q22 + 2Q66) s°¢
Q26 = (Q11 — Q12 — 2Qg6) 53¢ + (Q12 — Q22 + 2Qsg) s C*
Qss = (Q11 + Q22 — 2Q1; — 2Qg6) S*c*+ Qo (s* +¢*)

ijr Pij»
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where g is the angle between the fiber direction and longitudinal axis of the composite laminated beam, s = sinp,
¢ = cosf (Fig. 1), and @44, Q1,, and Q,, are the stiffness constants and are given as:

Q11 = E11/(1 —v13051) , Quz = V21 E11/(1 — v15021) = U135 B3 /(1 — v15024), and Q3 = Ez/(1 — v12051)
where E; 4, E,, are Young moduli, and v,,, v,,are Poison ratios measured in the principal axes of the layer.
The present formulation is based on first order shear deformation theory in which the effect of transverse shear
deformation due to bending is incorporated, then, the transverse shear force per unit length is given by [21]:

Qxz = AssVxz = Ass(OW/0x + ;) = Ass(W' + ¢by) O

inwhich Ags =k f_h,{/zz Qss dz, where Qss = Gi3¢% + G,352, k is the correlation shear factor and is taken as 5/6

to account for the parabolic variation of the transverse shear stresses.

The composite laminated beam is subjected to dynamic axial force N, and bending moment M,,, i.e., the lateral
in-plane forces and moments in Ydirection are set to zero, Ny, = N,,, = M,, = M,,, = 0. Thus, the constitutive
equations for laminated beam based on the first order shear deformation theory are obtained by using the classical
lamination theory as:

{Nx} = [Zn En] {gxxo} = [Zn En] {u’} (8)
M), s Bi1 Duil,,, kx Jaa Byy Dl (39 P
_ _ A22 A26 BZZ 326 - A12 BlZ
Where All Bll — A11 Bll] _[Alz A16 BlZ Blé] A26 A66 B26 B66 A16 Blé
By; Dyq X Bi1 Dilyy, Biz Bie D1z Dielyyy|Baz Bae Doz Dae Bi; Dy
X2
By Bes Dis Des 4x4 Bie Die 4%2
If the Poisson ratio effect is ignored, the coefficients (Zn,ﬁu,ﬁn) in equation (8) are then replaced by the

laminate stiffness coefficients (4,4, B11, D11), respectively.

4. Energy Expressions
Based on the first order shear deformation theory, the elastic strain energy U, of the laminated composite beam is
expressed as:

L L ’ ! !
US = %fo [NX‘SXXO + Mxkx + QXZ’VXZ] bdx = §f0 [qu + de)x + QXZ(W + ¢x)] bdx
Substituting equations (5) and (7) into the above equation, obtains:
Us = ;fOL[Anu’ 2+ 2By u' ¢y + Dy % + Ass(W'? + 2wy + ¢5)] bdx )
The potential energy V of the applied dynamic forces are given as:
V=- fOL[qx(x, ulx, t) + q,(x, Ow(x, ) + my(x, )P, (x, t)] bdx —

[P (e, )uxe, )15 — [P, Cxe, )W (xe, )15 — [My (X, ) s (e, )15 (10)
The kinetic energy T of the laminated composite beam is given by:
L ch/2 . . . L . . .o H
T = ; Jy f_f{/zp [42 + 92 + W?| bdzdx = ; Js [Lu? + Lw? + 21,0 ¢, + I;2] bdx (11)

where the densities I, I, and I; of the composite beam are introduced by:
m

h/2
11'12113 = f p [112' ZZ] dz = Z pn[(zk - Zk—l)' (ZI% - le—l)/z' (Zl:)c’ - Zli’—l)/3]
—h/2 k=1

in which the dot denotes the derivative with respect to time, and p,, (for n = 1,2,3) are the mass densities of the
k" layers.

5. Harmonic Vibration Functions
The applied harmonic forces and moments functions are expressed as:

4x (6, 1), 4, (%, £), my (x, £) = [G (%), Go(x), M, (x)] €™

P, (e, ), B, (xe, t), My (x,t) = [P, (x), P,(x), M,(x)] ™, for x, =0,L (12)
where Q is the circular exciting frequency of the applied forces, i = v/—1 is the imaginary constant, g, (x,t)
and q,(x, t) are the distributed axial and transverse harmonic forces, m, (x, t) is the distributed harmonic bending
moment, P.(x,,t) and P,(x,,t) are the concentrated axial and transverse harmonic forces, M, (x,,t) are the
concentrated harmonic bending moments, all forces and moments are applied at beam ends (x, = 0, L).
Under the given applied harmonic forces, the steady state displacement functions are given as:

u(x, ), w(x, t), o (x, 1) = [U(x), W(x), Dyx(x)]e™™ (13)

where U(x), W(x), and &, (x) are the amplitudes for axial translation, transverse displacement, and bending
rotation, respectively. As the present formulation aims to model solely the steady state dynamic response of the
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structural composite laminated beam, the displacement functions proposed in equation (13) disregard the transient
part of the dynamic response.

6. Governing Coupled Equations
The dynamic coupled equations for a composite antisymmetric laminated beam under harmonic forces can be
obtained through Hamilton’s principle, expressed as:

J28(T =My dt = 0, for u(x, 012 = Swx, O = 5 (x, 01 = (14)
where t, and t, are two arbitrary time variables and § denotes the first variation.

By substituting equations (11)-(13) into the energy expressions provided in equations (8)-(10), and subsequently
integrating by parts, the resulting equations of motion are derived in matrix form as:

(1,9* + A1, D?) 0 (1,9% + B;,D?) U(x) =g (%)
0 —(L,Q* + AssD?) —AssD W (x) =1 q,(x) (15)
(1,9% + B;,;D?) —AgsD (1,9% — Ass + D1, D),  (P2(0)), (M) ), |

The associated boundary conditions are:

[bA11U’(x) + bBy1 @5 (x) — P (x)]5 SU(xX) |5 = 0

[bAss (W' (x) + @, (x)) — P,(x)]5 sW (x)]6 = 0

[bBy; U’ (x) + D11 @5 (x) — My (x)]5 5P, (x)|5 = 0 (16)
where D is the differential operator, i.e., D = d/dx,D? = d?/dx?. The equations presented in (15) govern the
coupled extensional-bending dynamic response of composite antisymmetric laminated beams under various

harmonic forces. This study concentrates on deriving the exact closed-form solutions for the steady-state dynamic
response governed by these coupled equations.

7. Exact Solutions for Displacement Fields

The exact solution to the extensional-bending coupled equations in (14) is attained by equating the right-hand side
of the equations to zero., i.e. g, (x) = g,(x) = m,(x) = 0. Then, the solutions of the displacement functions are
given as:

(P(@))ixs =(UE) W) Pr(X))1xs = (Chixz €, for i =1,23,.....,6 A7)
where (¥ (x))1x3 = (U(x) W(x) ®,(x)),x3 isthe vector of displacements, and (C);x3 = (C1i C2i C3,i)1x3 IS
the vector of unknown constants. By substituting equation (17) into the equations in (15), and aiming for a non-
trivial solution, the determinant of the bracketed matrix is equated to zero, resulting in a sixth-order polynomial
equation given as:

P} + padi + P24 +p1 =0 (18)

where p; = Q*L [Q* (1[5 — 13) — L Ass],

Py = Q2[Q21,(I Dy + I3A1; — 21,By1) + Ass (1307 — 202 — LAy,

ps = Q?[I1D11(Ass + Ayy) + LAy Ass — [ BYy — 21,B114s5)], and py = Ass(A11D11 — BYy).
Equation (18) yields six unique roots, denoted as A; (fori = 1,2,3,....,6). Corresponding to each root 4; , there
exists a set of constants (C);1x3 = (C1i C2i C€3,);1%3. Upon back-substitution into the coupled system of
equations in (18), one can establish relationships between constants ¢, ; and ¢, ; to constants c5; through c;; =
GyiCs;and ¢y = Gpic35, Where Gy = —(By1 A7 + ,Q%) /(A1 A7 + L,Q%),and G, = —AssAi/(AssA? + LQ7).

The exact solutions for extensional displacement U(x), flexural displacement W (x) and associated bending
rotation @, (x) are given in matrix form as:

{¥(}axa =[G, JE®]exslC],, (19)
Gy Gy Gie
where [ﬂ3xﬁ = HGM} {Gm} {Gzﬁ}] , [E (x)]exe is a diagonal matrix consisting of the exponential
1 1 1 /346
functions e?* (fori = 1,2,3, ....,6), the vector of unknown constants (C);x¢ = (€31 €32 == €3,6) IS tO

be determined from the problem boundary conditions.

8. Finite Element Formulation

This section introduces a novel two-noded finite beam element developed for analyzing the extensional-bending
coupled vibration of composite shear deformable antisymmetric laminated beams subjected to different harmonic
axial and bending forces. Figure (2) shows the proposed two-noded finite composite beam element of length [,
and six degrees of freedom per element. To exactly investigate the solution of dynamic coupled field equations, a
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set of shape functions is utilized, ensuring exact formulation of stiffness and mass matrices, along with the load
potential vector.

z
A
z
o W o, WY k
XL'K_ XJK—\
U; ] X hI Y
/v
| . | —p
Node i Nodej

Cross-section
Beam element

Figure (2): Two-noded beam element for extensional-bending coupled response.

In the present finite element formulation, the vector containing unknown integration constants is represented using
nodal displacements (d,)ixc = (U1 Wi @y U, W, @, ) .sby applying the conditions U(0) = U,,
W(0) =W, ©,(0) = &y, U(le) = Uy, W(l,) = W,, and O,.(1,) = D,,, yields:

{W(O)}3x1} {{W(O)}3x1} [[5]3X6[E(0)]6xél _ _
dnlex1 = = _ C}  =[RlexelC 20
{dn}e {{sv(le)}sxl o P UDsx) gy |G,  [EUe)l6xs ﬁxﬁ{ Jor = [RlexelCl,,,  (20)
From equations (19) and (20), one obtains:

{F()}sx1 = [E]3x6[E(x)]éxs[ge]gie{dN}exl = [H()]3xe{dn}6x1 (21)

The matrix of shape functions for the extensional-bending coupled response is defined as [H(x)]lsxe =
[E]3X6[E(x)]6X6[R]g§6. It is evident from equation (21) that the derived shape functions exactly satisfy the

homogeneous solution of the coupled field equations presented in equation (15). Additionally, they are depending
upon the beam element span, cross-section geometry, and the exciting frequency of the applied harmonic forces.

8.1 Energy Expressions in Terms of Nodal Displacements
The variations of the energy expressions for the composite antisymmetric laminated beam are, respectively,
obtained in terms of nodal degrees of freedom as:

8T = (di)1xs [P9? [, ((H () TEa ZonLases [H ()]s + [He () Eal Zelasca [He ()]axs) x| {dnJoxa e (22)
8U; = (6dn)rxs (J° [[H OOV [Zalasa [H' @axs + [H' ()] alZsaxalHo ()] ascs +

[Hy ()]sl ZTaxal Hy )], | ) (dndesae™ (23)

and, OV = —(8dw)ie (J [[H O 5alQadsxadx  + [HEO s (Qdaals ) e (24)

where [Z,]3x3 = diag.[plib  pLi b pliblsys, [Z:]sxz = diag.[plbkb 0 plyblsys,
[Z,]3x3 = diag.[bA;1  bAss bDiqlzys, and [Zs]zxs = diag.[bByy  bAss bBiq]zxs,
Zyl3x3 = diag.[0 0 bAss]z.s, [Hc(x)]£x3 = [Hl.j(x) 0 H3.j(x)]€x3:

[
[He()]sxe = [Ha;(x) 0 Hyj(Olsxe, [Hi()lexs = [{Ha;0), , {Hs; 0}, {H;®}, ]
H 0o = [0 0 {H3;@),, ], and [H,(0], =[0 0 (H3;()+Hs;(x)

3x6

T
6x3’

6><1]3><6 '

8.2 Discretized Equilibrium Equations
By substituting equations (22-24) into Hamilton’s principle as depicted in equation (14), yields:

([Keloxe — 0% [Meloxe)oxetdntoxs = {Felext (25)
in which, the element stiffness matrix [K,]4x¢ is Obtained as:

le
[Ke]6x6=J [[H’(x)]gx3[Za]3x3[H,(x)]3x6 +[H’s(x)]gx3[ZS]3><3[H,(x)]3x6
0

+ [Hr (Vs [Z,Tawa [H (0)]axs | dx
The mass matrix [M,]¢x¢ for the beam element is obtained as:

le
(M, ]oxe = j [H OO L5 [Zom s [H ()|
0

while, the element load vector of the applied harmonic forces is given by:
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le

{Flexa = | [[HOO5xa{Qadaxidx  + [H)5xa{Qctaxalie
0

The provided formulations detail the elastic stiffness, mass matrices, and load vector designed for a one-
dimensional, two-noded antisymmetric composite laminated beam element featuring three degrees of freedom per
node. This proposed beam element is developed for investigating the steady-state dynamic analysis, particularly
focusing on extensional-bending coupled responses by using the exact shape functions developed in this
formulation. Although the mainly aimed at dynamic responses of composite laminated beams, the developed beam
element can also be employed to capture quasi-static responses. Moreover, it facilitates the prediction of
extensional-bending natural frequencies and associated mode shapes.

9. Numerical Examples and Discussions

The proposed one-dimensional finite beam element, developed within this study, aims to analyze the dynamic
extensional-bending coupled response of composite antisymmetric laminated beams subjected to various
harmonic bending forces and moments. It serves the following purposes:

o Establishing the steady-state dynamic coupled responses for antisymmetric laminated beams under harmonic
bending forces and moments at a certain exciting frequency Q.

o Capturing the quasi-static responses of composite antisymmetric laminated beams under given harmonic
forces by utilizing very low exciting frequencies  compared to the first natural frequency of the composite
beam (Q =~ 0.01w,), where w, represents the first natural frequency of the given composite beam.

o Predicting the natural frequencies and associated mode shapes of the given composite antisymmetric laminated
beams under various harmonic forces.

In order to assess the accuracy and suitability of the proposed finite composite beam element formulated in this
study, several numerical examples are presented. These examples investigate the extensional-bending coupled
responses of antisymmetric laminated beams, considering different harmonic bending forces and moments under
varying boundary conditions. The finite beam element under consideration based on the exact shape functions
derived from the exact solutions of the governing coupled field equations of antisymmetric composite laminated
beams. These shape functions are employed in formulating the mass, stiffness matrices, and load vector. The
proposed finite beam element based on the exact shape functions, presents two distinguished advantages: (a) It
eliminates the discretization errors inherent in conventional interpolation functions and converges towards the
excellent results while utilizing a minimal number of degrees of freedom. (b) It results in elements devoid of shear
locking issues. Consequently, it is observed that results obtained by using a single finite beam element exhibit
excellent agreement with those derived from the exact closed-form solution established in a previous study [24].
The nodal degrees of freedom results obtained from the present formulation are compared with those from
established Abaqus finite element models and exact solutions found in the literature. Within the Abaqus finite
element model, the shell S4R elements are employed to simulate the composite laminated beam. The shell S4R
element has four nodes with six degrees of freedom per node (i.e., three translations and three rotations), and
effectively captures the shear deformation and distortional effects of the beam cross-section.

9.1 Example (1): Antisymmetric Laminated Composite beam - Validation

To assess the accuracy and validity of the proposed finite beam element solution, a graphite-polyester composite
beam of four-layered antisymmetric (30°/—60°/30°/—60°) laminates The composite beam of length L =
0.572m, and rectangular cross-section (width b = 25.40mm and thickness h = 25.40mm) is subjected to
uniformly distributed harmonic transverse force q,(x,t) = 5.0e'* kN /m as shown in Figure (3). All four layers
have the same thickness and made of the same orthotropic composite material as: E;; = 221.0Pa, E,, =
6.90GPa, G,, = 4.80GPa, G,3 = 4.14GPa, G,; = 3.45Pa, v;, = 0.3,and p = 1550.1 kg/m3. This example is
offered to achieve the steady-state dynamic analysis aimed at predicting the natural extensional-bending
frequencies. It focuses on the coupled extensional-bending behavior of the given composite lamented beams
having different boundary conditions.

q,(z,t) = 5.0e"¥kN/m

REEEERRERERRERE 300I

| 7 -60°
1 30°

60° |y
1=0.572m 4J e b

Figure (3): A composite antisymmetric laminated beam under harmonic distributed force.
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In Abaqus finite element model, the composite antisymmetric beam is divided into 80 S4R shell elements along
the longitudinal axis of the composite beam and 4 shell S4R elements along the beam width, i.e., a total of 320
S4R shell elements with 2830 degrees of freedom are required to achieve the required accuracy, whereas the
finite-element solution developed in the present study based on exact shape functions is conducted using a single
finite element with two nodes and six degrees of freedom per node for clamped-free beam while for other
boundary conditions, two beam elements with nine degrees of freedom are used.

When the beam subjected to uniformly distributed harmonic bending force: q,(x, t) = 5.0e'*kN /m, the natural
frequencies associated with the extensional-bending coupled response can be determined through the steady state
dynamic analyses by varying the exciting frequency f from nearly zero to 2500Hz for clamped-free and 3500Hz
for clamped-pinned boundary conditions. Figures (4a-c) and (5a-c) illustrate the nodal axial displacement U,,,
transverse displacement W, and related bending rotation ¢,,, at the midspan (x = L/2) for clamped-free and
clamped-pinned composite beams as a function of exciting frequency f. Peaks observed on the diagrams signify
the resonance, providing insights into the natural frequencies of the given composite beams with clamped-free
and clamped-pinned boundary conditions. Following this, the first six natural frequencies extracted from the peaks
of Figs. (4) and (5) are listed in Table (1) for various boundary conditions.

To validate the accuracy of the present finite element formulation, the first six natural coupled extensional-bending
frequencies predicted from the present formulation are compared with those reported by Jun et al. [21] and Abaqus
finite shell element model. Remarkably, the present finite element solution demonstrates outstanding agreement
with the findings presented by Jun et al. [21]. Consequently, the present solution accurately captures the eigen-
frequencies of composite antisymmetric laminated beams having clamped-free, clamped-clamped, clamped-
pinned, and pinned-pinned boundary conditions. Notably, the present finite element developed successfully
exhibited that the fifth frequency in clamped-free and sixth frequency in clamped-pinned composite laminated
beams are fully extensional natural frequencies. This leads to conclude that, the present finite beam element
solution is successful at extracting the eigen-frequencies and eigen-modes of the given composite beams.
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Figure (4): Natural frequencies of antisymmetric
(30°/-60°/30°/-60°) laminated clamped-free beam
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Table (1): Natural frequencies for composite antisymmetric (30°/-60°/30°/-60°) laminated beam.

3500

Figure (5): Natural frequencies of antisymmetric
(30°/-60°/30°/-60°) laminated clamped-pinned beam

Boundary | Frequency un et,;lla tural frequencies in (Hz) %Difference | %Difference
condition Number 21" " | Abaqus FE? | Present FE® =[2-1]/2 =[2-3]/2
1 47.01 47.64 47.05 1.32% 1.24%
2 289.7 291.4 289.7 0.58% 0.58%
Clamped- 3 789.5 788.0 789.5 -0.19% -0.19%
free 4 1491.3 1468.1 1491.3 -1.58% -1.58%
5 1646.6 1667.8 1646.7* 1.27% 1.27%
6 2360.4 2300.9 2360.5 -2.59% -2.59%
1 291.9 296.3 291.9 1.48% 1.48%
2 778.2 779.8 778.2 0.21% 0.21%
Clamped- 3 1464.7 1447.3 1464.8 -1.20% -1.21%
clamped 4 2310.9 2251.3 2311.0 -2.65% -2.65%
5 3282.4 3157.0 3282.5 -3.97% -3.98%
6 3293.3 3322.7 3293.5 0.88% 0.88%
1 203.6 205.9 203.6 1.12% 1.12%
2 643.0 642.2 643.0 -0.12% -0.12%
Clamped- 3 1295.0 1269.1 1295.0 -2.04% -2.04%
pinned 4 2122.2 2070.3 21222 -2.51% -2.51%
5 3087.6 2997.0 3087.9 -3.02% -3.03%
6 3293.2 3321.7 3293.3* 0.86% 0.85%
1 131.7 135.3 131.8 2.66% 2.59%
2 516.8 511.4 516.9 -1.06% -1.08%
Pinned- 3 1129.4 1112.9 11295 -1.48% -1.49%
pinned 4 1933.0 1895.3 1933.3 -1.99% -2.00%
5 2890.0 2880.0 2890.0 -0.35% -0.35%
6 32925 3319.7 3292.7 0.82% 0.81%

* Fully extensional natural frequency

9.2 Example (2): Quasi-static and Dynamic Responses - Verification
In this example, an antisymmetric cross-ply (0°/90°) laminated composite beam subjected to uniformly
distributed transverse harmonic force q,(x,t) = 200e“** N /m along the beam axis is analyzed using the finite
beam element developed in this formulation. The composite beam has a rectangular cross-section of width
b=25.4mm and height of h=25.4mm. The two-layers are of equal thickness and made of the same orthotropic
material whose properties are: E;; = 25.0GPa, E,, = 1.0GPa, G, = Gi3 = 0.5E,,, G35 = 0.2E,,, vy, =

0.25, and p = 1389.2kg/m3.
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To demonstrate the validity and accuracy of the proposed finite beam element for predicting the quasi-static and
steady-state dynamic responses, the numerical results obtained are compared with the results available in the
literature. The quasi-static and steady state dynamic responses for the composite beam are carried out for various
span to thickness ratio L/h. The quasi-static analysis captured by using a very low exciting frequency (i.e., Q =
0.01w,) related to the first natural frequency w, of the given composite beam is compared with the corresponding
results reported in Khdeir and Reddy [22], Chakraborty et al. [13], Vo and Thai [23], and Hjaji and Nagiar [24],
while the steady-state dynamic response computed at exciting frequency Q = 1.80w, is compared with Abaqus
finite element model, in which the S4R shell elements are used to model the composite beam.

In Abaqus finite element model, the composite beam subdivided into 80 S4R shell elements along the longitudinal
axis of the beam and 2 S4R shell elements along the beam width which are needed to attain the required accuracy.
The model consists of 160 S4R shell elements with six degrees of freedom per node, which leads to approximately
1460 degrees of freedom. While the finite element solution developed in the present study based on exact shape
functions is conducted using two beam elements with three degrees of freedom per node (i.e., the model has only
9 degrees of freedom). It is noted to give results exactly matching with those based on the exact closed-form
solution reported in Hjaji and Nagiar [24] up to five significant digits. This is a natural outcome of the fact that
the present finite beam element is based on the shape functions, which exactly satisfy the exact solutions of the
governing coupled field equations, which in turn eliminates discretization errors encountered in classical finite-
element formulations.

9.2.1 Quasi-Static Analysis

To offer further comparison, the non-dimensional form of the transverse displacement function W =
100bh3E,,w/q,L* defined by Vo and Thai [23] is investigated for the static analysis of composite beams under
distributed harmonic transverse force. The quasi-static results of non-dimensional mid-span displacements W for
different span-to-thickness ratio (L/h) obtained from the present finite beam element are compared with those
results based on exact solutions of Khdeir and Reddy [22], and Hjaji and Nagiar [24], and finite element solutions
provided by Chakraborty et al. [13], and Vo and Thai [23]. The effect of span-to-thickness ratio (L/h) on the static
responses of the non-dimensional mid-span transverse displacements W (L/2) for antisymmetric (0°/90°)
laminated composite beams are provided in Table (2), for clamped-free and simply-supported boundary
conditions. It is evident that the static results obtained from the present finite element formulation exhibit excellent
agreement with those obtained from other solutions.

Table (2): Static results for non-dimensional mid-span displacement of antisymmetric (0°/90°)
laminated beam under distributed harmonic transverse force.

Beam W(L/2)
type Reference (Uh)=5 | (Un)=10 | (Un)=20 | (L/h)=50

Khdeir and Reddy [22] 16.436 12.579 - 11.345
Chakraborty etal. [13] 16.496 12.579 - 11.345
Clamped-free Vo and Thai [23] 16.461 12.604 11.640 11.370
Hjaji and Nagiar [24] 16.448 12.591 11.626 11.357
Present finite element 16.448 12.591 11.626 11.357
Khdeir and Reddy [22] 5.036 3.750 - 3.339
Simply Chakraborty eFaI. [13] 5.048 3.751 - 3.353
supported _V_q and Thal_ [23] 5.043 3.757 3.436 3.346
Hjaji and Nagiar [24] 5.040 3.752 3.432 3.342
Present finite element 5.040 3.752 3.432 3.342

The quasi-static nodal results for the axial displacement U,,, transverse displacement WW,,, and the corresponding
bending rotation @,,, (for n=1,2,...,6) depicted along the composite beam coordinate axis x for span-to-height
ratio of L/h = 50, in the antisymmetric (0°/90°) composite laminated beam having clamped-free and simply-
supported boundary conditions, are demonstrated in Figs. (6a-c) and Fig.(7a-c) respectively. The present finite
element solution is validated by comparison with those given in exact solution of Hjaji and Nagiar [24], and
Abaqus finite shell element solution. Even though the present formulation efficiently computed the nodal results
by using single element for clamped-free and two beam elements for simply-supported beam, but for the sake of
comparison, five beam elements with a total 18 dof are utilized. Thus, the quasi-static nodal results obtained from
the proposed finite beam element show excellent agreement with those results obtained by other two solutions.
Therefore, the present finite beam element is able to efficiently capture the static response of the given composite
beams by keeping the number of degrees of freedom a minimum.
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9.2.2 Dynamic Analysis

The steady state dynamic results for the nodal axial displacement U,,, transverse displacement 4, and the related
bending rotation &,,, (for n=1,2,...,6) plotted against the beam axis x for clamped-free and simply-supported
composite beams with span-to-height ratio L/h = 50, are shown in Fig. (6d-f) and Fig.(7d-f), respectively.
Figures illustrate the nodal dynamic responses obtained from the three solutions and for three different values of
exciting frequencies related to the first natural frequency, Q; = 0.60w,, Q, = 1.60w,, and Q; = 2.60w,, Where
the first natural frequency for clamped-free beam is f; = 29.04Hz and for simply-supported composite beam is
fi = 13.09Hz. Three solutions, based on the exact solution of Hjaji and Nagiar [24], Abaqus finite shell solution
and the finite beam element solution developed in this study are overlaid on the same diagrams for comparison.
It is clear that the nodal dynamic results based on the three solutions are exactly coincided. In other words, the
nodal steady state dynamic responses obtained from the present finite beam element using 18 dof demonstrate an
excellent agreement with those results based on exact solution in Hjaji and Nagiar [24] and Abaqus finite shell
element model having 1460 dof. Once more, the present finite beam element employing exact shape functions
successfully achieves the steady state dynamic response, thereby eliminating the discretization errors commonly
arise in traditional finite element formulations replying on the interpolated shape functions.
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Figure (6): Quasi-static and dynamic responses of composite antisymmetric (0°/90°) laminated
clamped-free beam under distributed transverse harmonic force (L/h=50).
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Figure (7): Quasi-static and dynamic responses of composite antisymmetric (0°/90°) laminated
Simply-supported beam under distributed transverse harmonic force (L/h=50).

9.2.3 Fiber Orientation Effect on Static Response
In order to evaluate the convergence and accuracy of the proposed finite element solution to predict the static
response of the composite beam, additional comparison is presented in Table (3). The influence of varying fiber
orientation angle S on the dimensionless mid-span static nodal displacement W;,(L/2) for antisymmetric
composite (0°/8°) laminated beam subjected to uniformly distributed harmonic transverse force. The composite
beam is analyzed for different span-to-height ratio (L/h=5, 10, and 50) and for simply-supported, clamped-free,
clamped-simply supported, and clamped-clamped boundary conditions. A comparison with the static results of
Karamanli [25] demonstrates that the static results of the antisymmetric composite beam (0°/8°) calculated from
the present solution exhibits an excellent agreement. Again, the proposed finite beam element solution effectively
captures the quasi-static response of the given composite laminated beams.

Table (3): Dimensionless mid-span static displacement of antisymmetric [0°/£°] composite
beams having various boundary conditions.

Boundary Ratio Dimensionless mi_d-span static displacements of antisy_mmetric
condition Reference (L/h) [0°/8°] composite beams for various boundary conditions
Q° 15° 30° 45° 60° 75° 90°
Simply- | Karamanli [25] 5 1.8234 | 1.8910 | 2.1276 | 2.6757 | 3.7836 | 4.8467 | 5.0359
supported | Present FES 1.8238 | 1.8910 | 2.1276 | 2.6757 | 3.7836 | 4.8467 | 5.0359
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Karamanli [25] 10 0.9234 | 0.9726 | 1.1547 | 1.6169 | 2.6223 | 3.5968 | 3.7502

Present FES 0.9238 | 0.9726 | 1.1549 | 1.6169 | 2.6227 | 3.5988 | 3.7502

Karamanli [25] 50 0.6354 | 0.6787 | 0.8433 | 1.2780 | 2.2507 | 3.1969 | 3.3387

Present FES 0.6356 | 0.6787 | 0.8433 | 1.2781 | 2.2508 | 3.1971 | 3.3389

Karamanli [25] 5 5.7197 | 5.9398 | 6.7150 | 8.5326 | 12.245 | 15.812 | 16.436

Present FES 5.7199 | 5.9398 | 6.7150 | 8.5365 | 12.245 | 15.812 | 16.436

Clamped- | Karamanli [25] 10 3.0197 | 3.1844 | 3.7961 | 5.3561 | 8.7611 | 12.063 | 12.579
free Present FES 3.0204 | 3.1844 | 3.7961 | 5.3561 | 8.7611 | 12.063 | 12.579
Karamanli [25] 50 2.1557 | 2.3027 | 2.8621 | 4.3397 | 7.6462 | 10.863 | 11.345

Present FES 2.1559 | 2.3027 | 2.8621 | 4.3397 | 7.6464 | 10.863 | 11.345

Karamanli [25] 5 1.5899 | 1.6371 | 1.7929 | 2.1135 | 2.6811 | 3.2070 | 3.3197

Clamped- Present FES 1.5900 | 1.6368 | 1.7929 | 2.1130 | 2.6810 | 3.2070 | 3.3198
SimSIy Karamanli [25] 10 0.5983 | 0.6229 | 0.7107 | 0.9194 | 1.3500 | 1.7637 | 1.8345
supported Present FES 0.5984 | 0.6229 | 0.7107 | 0.9194 | 1.3500 | 1.7637 | 1.8345
Karamanli [25] 50 0.2636 | 0.2811 | 0.3475 | 0.5223 | 0.9125 | 1.2919 | 1.3490

Present FES 0.2637 | 0.2811 | 0.3475 | 0.5223 | 0.9125 | 1.2919 | 1.3490

Karamanli [21] 5 1.3247 | 1.3579 | 1.4634 | 1.6645 | 1.9954 | 2.3025 | 2.3786

Present FES 1.3249 | 1.3579 | 1.4634 | 1.6645 | 1.9954 | 2.3025 | 2.3786

Clamped- | Karamanli [25] 10 0.4247 | 0.4394 | 0.4904 | 0.6057 | 0.8341 | 1.0527 | 1.0929
clamped Present FES 0.4247 | 0.4394 | 0.4904 | 0.6057 | 0.8341 | 1.0527 | 1.0929
Karamanli [25] 50 0.1367 | 0.1455 | 0.1790 | 0.2669 | 0.4625 | 0.6527 | 0.6815

Present FES 0.1367 | 0.1455 | 0.1790 | 0.2669 | 0.4625 | 0.6527 | 0.6815

To further validate the present finite element approach, the variation of nodal static mid-plane displacement results
given in Table (2) are plotted along the beam coordinate axis x for simply-supported, cantilever, clamped-simply
supported and clamped-clamped boundary conditions as depicted in Figures (8a-d), respectively. The figures
illustrate that the nodal static results obtained through the present formulation exactly coincide with those obtained
from the Abaqus finite shell element model, thus exhibiting excellent agreement. Therefore, the proposed finite

beam element solution is reliable and accurate.
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Figure (8): The static mid-span displacements versus fiber orientation g of antisymmetric (0°/5°) beams under
distributed harmonic transverse force for different boundary conditions.
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9.2.4 Fiber Orientation Effect on Natural Frequencies

This section presents the variation of first four coupled natural frequencies (fi, f2, f5 and f,) with fiber orientation
angle (B) of the composite antisymmetric (0°/8) laminated clamped-free and clamped-simply supported beams
having various span-to-height ratio L/h (10,20,30 and 40) as illustrated in Figs. (9) and (10), respectively. It is
seen that, the natural frequencies of the antisymmetric composite beam are affected by the using different
boundary conditions, fiber orientation angle, as well as L/h ratio. It is also noted that, the composite laminated
beams of (0°/0°) fiber orientations have the highest coupled natural frequencies than the other fiber orientation
angles, and consequently, because 100% of the fibers are oriented at longitudinal direction (i.e., 8 = 0°) of the
laminated beam. This causes the laminated beam to be more stiff than other fiber orientations. In addition, the
influence of fiber orientation angles becomes more significant on the coupled natural frequencies when the fiber
angles are observed up to around 60° for cantilever boundary condition and 70° for the case of clamped-simply

supported boundary conditions. Furthermore, the composite laminated clamped-simply supported beam has larger
natural frequencies than the composite cantilever beam.
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Figure (9): The variation of natural frequencies of antisymmetric (0°/) composite laminated cantilever
beam for different (L/h) ratios versus fiber orientation/
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Figure (10): The variation of natural frequencies of antisymmetric (0°/ 3) composite laminated clamped- simply
supported beam having different (L/h) ratios versus fiber orientation.

9.3 Example (3): Asymmetric Laminated Beam under Harmonic forces

In this example, the accuracy of the proposed finite beam element is validated. For this purpose, a four-layered
antisymmetric cross-ply (0°/90°/0°/90°) laminated composite clamped-roller supported beam of 10m length
(width b=40mm, and height h=40mm) subjected to distributed transverse harmonic forces gq,(x,t) =
400e“¥ N /m, concentrated forces P,,(x,t) = 500e™*N, P,,(x,t) = 300e'?*N and P,;(x,t) = 200e“’*Nm
is considered as shown in Figure (10). All four layers have the same thickness and made of the same orthotropic
material properties: E;; = 144.8 GPa, E,, = 9.65 GPa, G,, = G5 = 4.14 GPa, G,3 = 3.45 GPa, v,, = 0.30,
and p = 1750kg/m3. The example is given to achieve the following: (i) to compute the quasi-static response of
the antisymmetric composite beam using very low exciting frequency Q =~ 0.01w,, where the first natural
frequency of the given composite beam is f; = 2.56Hz, and (ii) evaluate the steady state dynamic response of the
given composite beam under harmonic forces at exciting frequency Q = 100rad /sec.
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Figure (10): A composite antisymmetric laminated beam under various harmonic forces.

Two finite element solutions are provided for this problem. The first solution is based on the Abaqus finite shell
element model, in which the antisymmetric composite beam is divided into 1000 shell S4R elements along the
longitudinal axis of the beam, and 4 elements along the beam width. The composite beam model consists of 4,000
shell S4R elements with six degrees of freedom per node, which leads to approximately 30,000 degrees of
freedom. The second solution is based on the present finite beam element, where the composite beam is subdivided

into only five two-noded beam elements along the composite beam axis, i.e., the composite beam model has only
30 degrees of freedom.

The nodal axial displacement U,,, transverse displacement I, and bending rotation &,,,, are plotted against the
beam coordinate axis as in Figs. (11la—c) for static response and Figs. (11d-f) for the steady-state dynamic
response. The figures show excellent agreement between the nodal displacement functions predicted by the
present finite beam element (using 30 degrees of freedom) and the Abaqus finite shell element model (using
30,000 degrees of freedom). The computational effort in the present finite element solution is several orders of
magnitudes less than that of Abaqus finite element solution. This naturally occurs due to the fact that the proposed
finite beam element is constructed using shape functions that exactly satisfy the solution of the governing
extensional-bending coupled equations. As a result, this eliminates the discretization errors commonly
encountered in finite element approaches.
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Figure (11): Static and dynamic responses of composite antisymmetric (0°/90°/0°/90°) laminated
composite beam under various harmonic transverse forces.

10. Summary and Conclusions

o

The equations governing the motion and corresponding boundary conditions of antisymmetric composite
laminated beams subjected to different harmonic forces are formulated by applying the Hamiltonian
variational principle.

The formulation is based on the first-order shear deformation theory, which integrates the influences of shear
deformation, rotary inertia, Poisson's ratio, and the interactions between extensional and bending deformations
arising from material anisotropy.

The new beam two-noded element is based on shape functions which exactly satisfy the solution of governing
field equations and thus eliminates the discretization errors commonly found in other interpolation methods
and generally exhibits excellent results while minimizing the number of degrees of freedom required.

The new finite beam element successfully captures the extensional-bending coupled response of composite
laminated beam with antisymmetric laminates.

The proposed finite beam element effectively captures how composite beams respond to different harmonic
forces in both static and steady state dynamics. It can obtain the steady state dynamic response without
requiring eigen-modes extraction. Additionally, it has the ability to extract eigen-frequencies and eigen-modes
when necessary.

The present finite element solution offers excellent agreement with Abaqus finite shell element while requiring
significantly less computational resources and modeling effort.
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