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Abstract:

The theory of operators is an important subject in analytic function theory, geometric function theory and
univalent function theory. It also is an important subject in applied sciences. It is still an active field of research
and various types of problems, which can be solved by generalising operators. Recently, many researchers have
shown great interests in the study of differential operators in the theory of univalent functions and various
subclasses of analytic functions defined in the open unit disc. In this paper a generalised derivative operator
D,{’I"’,{Z'& will be used to derive some results concerning the subordination and superordination of analytic function

in the open unit disc.
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Introduction
Let A denote the class of functions of the form

f(@)=z+Y7, a,z™, (1.1)
which are analytic in the open unitdisc U = {z:z € C, |z]| < 1}.
Let 7€ (U) be the class of analytic functions in the open unit disc U. For a € Cand n € N, we let
Hla,n] ={f e H{U),f(2) = a+ apz" + ap 12" + -}, (z € 1), (1.2)
with H, = H[0,1] and H = H[1,1].

Recall that the function f is subordinate to g if there exists the Schwarz function w, analytic in U, with w(0) = 0
and |w(z)| < 1 such that f(z) = g(w(2)),z € U. We denote this subordination by f(z) < g(2). If g(2) is
univalent in U, then the subordination is equivalent to f(0) = g(0) and f(U) c g(U).
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Let :C3 XU > C and f,h € H(U). If f and ¥(f(2),zf'(2),z%f"(2); z) are univalent in U and f
satisfies the second-order differential subordination
V(f(2),2f'(2),2°f"(2); 2) < h(2), (z€N), (1.3)

Then £ is called a solution of the differential subordination. The univalent function g is called a dominant
of the solutions of the differential subordination, or more simply a dominant, if f < g for all fsatisfying(1.3).

Many interesting results containing the above mentioned subordination and also many applications of
the field of differential subordination discussed in [2]. In that direction, many differential subordination and
differential superordination problems for analytic functions defined by means of linear operators can be found in

[4]-[9].

In order to prove the original results we need the following definitions and theorems:
Definition 1.1 (see [2]). Denote by Q the set of all functions q that are analytic and injective on U\E(q), where

E(q) ={( € OIU:EB} = 0}, (1.4)

such that ¢'({) # 0 for { € AU\E(q). Further let the subclass of Q for which q(0) = a be denoted hy
2(a),2(0) = Qp,and Q(1) = 9;.

Definition 1.2 (see [2]). Let Q be asetin C,q € @, and let n be a positive integer. The class of admissible
functions W, [€, q] consists of those functions : C3 x U — C that satisfy the admissibility condition
W(c, d,e;z) ¢ Q whenever ¢ = q(7),d = kiq'(0),

R{=+1} >k {% +1}, (1.5)

where z € U,{ € 0U\E(q), k = nand ¥;[Q, q] = Y[Q, q].

Definition 1.3 (see [3]). Let Q be asetin C, q € #[a,n] with q'(z) # 0. The class of admissible functions
¥’ [Q, q] consists of those functions : C3 x U — C that satisfy the admissibility condition yi(c,d, e;z) & Q
whenever ¢ = q(z),d = zq'(2)/p,

*R{% + 1} > %m{% + 1}, (1.6)

wherez € U,{ € 0U,p = n = 1and ¥'1[Q, q] = ¥'[Q, q].
Theorem 1.1. (see [2]). Let ¢ € W, [€, q] with q(0) = a. If the analytic function j(z) € H [a, n] satisfies
V(i(2),2j'(2),2%j" (2); 2) € Q, (1.7)
then j(z) < q(2).
Theorem 1.2. (see [3]). Let ¢ € ¥',,[Q, q] with q(0) = a. If j € Q(a) and Y (j(z), zj' (z), %" (z); z) is univalent
in U, then Qc {Y(j2),2j'(2),2%" (2); 2): z € U}, (1.8)
implies q(z) < j(2).
We now state the following generalized derivative operator [1] as follows:

1+(A1+42)(n—1)+b
1+25(n—1)+b

DZ:iz_sf(Z) =z+Yr, [ ]m c(5,n)a,z", (1.9)

where 1,=>14,20, ¢(6,n)=(+1),_4/(n—1),, for §,mbeN,=1{012,..} and (x), is the
Pochhammer symbol.

Note that D", f(2) = f(2) and Dygf (z) = zf'(z). the operator D};  includes the Ruscheweyh derivative
operator in the case foaz, s [15], the Salagean derivative operator in the case DI”_(;?O [12], the generalized Salagean

derivative operator introduced by Al-Oboudi in the case Dﬂ:g_o [14], the generalized Ruscheweyh derivative
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operator in the case 7_)}'1%'5 [13], the generalized Darus and Al-Shagsi derivative operator in the case Dﬁ;f’a [10],
the Eljamal and Darus derivative operator in the case Dﬂ:gzs [11].

To prove our results, we need the following inclusion relation:
(1 +b)D3 505 (2) = (1= (U +A) + D)(D1)3, of (2) * 07,(2)) + (4 + A)2(D 5, 5f (2) * 95,(2))),

(1.10)

Z‘)'l

where @} (z) is analytic function given by @7 (2) = z + X5, eI
e

Subordination Results Associated with D;’;’ZZ,&

Definition 2.1. Let Q be asetin Cand q € @, N H'[0,1]. The class of admissible functions ®[Q, q] consists of
those functions ¢: €3 x U — C that satisfy the admissibility condition:

d(u,v,w;z) & Q (2.1)
whenever
_ _ k(A1+22)¢q/($)+(1-(A1+42)+b)q($)
u=q@), v= T .
{(1 + D)2+ A)w — (1= (g +25) +b)* (A + A)u 2(1 = (A +22) + b)} - {Zq” @, 1} 22)
(1 +D)(4 +22)%v — (1 — (A + 22) + b)(A1 + A2)%u (4 +4) h q'(©) ' '
where z € U,{ € OU\E(q),b € Ny, A, = 4; > 0,and k > 1.
Theorem 2.1. Let ¢ € ®p[Q,q]. If f € A satisfies
B (D2,5f (D) * 92,(2), Dy, 5,5 (2), Dy s f (2);2):2 € U}  Q, (2.3)
Then (D3, 5f(2) * 95,(2)) < q(2), (z € V). (2.4)
Proof The following relation obtained from (1.10)
sty _ Gat )2 (D4 sf(@ *02,(D) (1= +22) +b) (D4 5f (@) * 0, (2)) .
roa,sf (@) = 140D + 1+b ' (25)
hence
r+2292(DIHEE £ 2y, () (-1 +22)+D) DY b £ (2)+08, (2)
Dﬂzf’sf(z) = ( 1142-1; - ) + 111;2 : — (2.6)
Now, we define the analytic function in U by
j(@) = D%, 6f () * 03, (2), 27)
then we obtain
+1p (M +2)7j'(2) + (1 = (A4 + 43) + b)j(2)
DA = '
DI2sf (@) = (M + 22)%2%" (2) + (A + A)?
+2(1 — (A4 + 42) + D)(A + 12))7j'(2) + (1 — (A4 + 22) + b)?j(2))/(1 + b)*. (2.8)

Further, we define the transformations from C3 to C by

53 | African Journal of Advanced Pure and Applied Sciences (AJAPAS)



_ (/11+/12)d+(1;5211+)lz)+b)c (2.9)

w= (4 +21)e+ (4 +2)2+2(1— (A4, + 1) + b)(A + 4,))d

u=c, v

+(1— (4 +4) +b)2)/(L+ b2 (2.10)

Let Y(c, d,e;z) = dp(u,v,w;2), (2.11)

d(wv,w;z) = ¢(c, (A, + 2)d + (1 — (44 + A2) + b)) /(1 + b), (A1 + 22)%e + (A, + 1)? +2(1 — (A, + 2,) +
bY(A4 + A2))d + (1 — (A1 + A3) + b)?c) /(1 + b)?; 2). (2.12)

The proof will make use of Theorem 1.1. Using (2.7) and (2.8), from (2.11) we have,
V3i(2),74'(),2%" (2);2) = $(D5, 6f (@) * 93, (2), DI 551 (2), Dy f (2); 2). (2.13)

Hence (2.3) becomes

V(j(2),2j'(2),2%]" (2); 2) € Q. (2.14)
We note that
€11 = (1+D)* (A +H2)w—(1=(A1 +22) +D)* (A1 +22)u  2(1—(A1+12)+b) (2.15)
d T (14b)(A1+22)2v—(1—(A1+22)+b) (A1 +22)2u (A1+22) ‘

since the admissibility condition for ¢ € ®,[Q, q] is equivalent to the admissibility condition for i as given in
Definition 1.2, hence ¢ € W[, q], and by Theorem 1.1, we obtain

j(2) < q(2),
that is
Dya,sf (2) * 93, (2) < q(2)-
In the case ¢ (u, v, w; z) = v, we have the following example.

Example 2.1. Let the class of admissible functions ®p,, [, q] consist of those functions ¢: €3 x U — C that
satisfy the admissibility condition:

v = k(A1+42)0q/({)+(1-(A1+42)+b)q({) ¢ 0
(1+b)

)

where z € U,{ € OU\E(q),b € Ny, 1, 2 4, > 0,k = 1and ¢ € p,[Q,q]. If f € A satisfies
D iaf (@ < Q,
then
Diva,sf (2) * 93,(2) < 4(2).
The following result follows immediately from Theorem 2.1.

Corollary 2.1. Let ¢ € Op[Q, q]. If f € A satisfies
D(D1r5,5f (@) * 93,(2), DY 55 f (2), Dy 525 f (2); 2) < h(z), (2.16)
then

DI sf(2) * 9h(2) < q(2). 2.17)

Superordination Results Associated with Dj{:ﬁz‘&
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Definition 3.1. Let Q be a set in C and q € H'[0,1] with zq'(z) # 0. The class of admissible functions ®'[Q, q]
consists of those functions ¢: C3 x U — C that satisfy the admissibility condition:

puw,v,w;{) € Q (3.1)
Whenever
_ _ (A1+2A2)zq'(2)+p(1—(A1+42)+b)q(2)
u=q2), v= p(1+b) ’
(1+5)* (A +22)w—(1-(A1 +22)+D)* (A1 +22)u _ 2(1-(A1+22)+D) 1,29 (2)
{(1+b)(/11+/12)2v—(1—(/11+/12)+b)(/11+/12)2u (A1+42) }= Pm{ q'(2) +1}
(3.2
where,z € U,{ € dU,b € Ny, 1, =2 4, > 0,andp = 1.
Theorem 3.1. Let ¢ € ®'p[Q, q]. If f € A, DI} (f € Qg and
DD sf(2) * 05,(2), Dy 45 f (2), D25 (2); 2), (3.3)
is univalent in U, then
Q c {5 5f (2) * 93,(2), DI L5 f (2), DI o245 f (2); 2): 2 € U}, (34)
implies that
q(2) < D5 5 (2) * 03, (2). (3.5)

Proof. From (2.13) and (3.4), we have

Qc {Y(j(2), 2 (2),2%" (2); 2): z € U}.

From (2.9), (2.10), we see that the admissibility condition for ¢ € ®',[(Q, q] is equivalent to the
admissibility condition for 1 as given in Definition 1.3. Hence i € W'[Q, q], and by Theorem 1.2, we have

q(z) < j(2),
that is

q(z) < DI"5 5 (2) * 93, (2).
Corollary 3.1. Leth be analytic in U and ¢ € ®'[Q,q]. Iff € A,Dﬂﬁzﬁf € 9, and
ODI sf(2) * 9L (2), DIHEEf(2), Dy 42 f (2); 2),
is univalent in U,then
h(z) < p(DF5 5f(2) * 95, (2), Dy ovaf (2), Dy h2sf (2); 2),
implies that

q(2) < D5 5f (2) * @3 (2).

Conclusion

In this paper, we obtained some results concerning the subordination and superordination of analytic function in
the open unit disc, which are related to the differential operator Dﬂjﬁzﬁ .
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