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Abstract:

In this article, we introduce a new type of r-countability axiom by using the concept of regular-dense (r-dense)
sets; the so called D-r-countability axiom, which states that space is D-r-(separable, first countable, Lindelof, 5-
compact, second countable) if a topological space contains an r-(separable, first countable, Lindel6f, 5-compact,
second countable) subspace that is r-dense. We study the relationship between these spaces, the r-countability
axiom and the d-countability axiom. Furthermore, we characterize the topological hereditary properties of these
spaces using theory and some examples. Finally, we study the behavior of the D-r-countability axiom and D-
countability axiom in regular spaces.
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Introduction

Many investigations have been conducted to define new r-countability axiom, some of which are weaker than
others. The important classical properties of topological spaces include r-separable, r-first countable, r-Lindel6f,
r-d-compact and r-second countable space. These properties are described in detail in [1]. In 1974, Siwiec [3]
defined g-first countable and second countable spaces in 1974 by using the notion of a susceptible base in
topological space. He then examined the relationship between these concepts and metrizability. A year last,
Siwiec [4] examined the theories that broaden the notion of first countability. He also looked at the relationship
between these theories, stating that a space is first countable if it is both Frechet g-first countable and [4].
Through b-open sets [6], Selvarani [5] presented the b-countability axioms principles in 2013. In same year, a
set of axioms related to countability on GT—known as the p-countability axioms—was developed by Ayawan
and Canoy [7]. The p-first and p-second properties of the product of GT's are the properties that are connected
with these concepts when viewed as concepts. Further details about universal topological bases' characteristics
can be found in [8, 9]. Pre-countability principles are a subset of p-countability principles that were defined in
2021 by Elbhilil and Arwini [10] using the pre-open notion. They also examined the topological characteristics
of these spaces. The term "s-countability axioms" refers to the overall framework for measuring countability,
that Elbhilil [11] defined in 2023 using the idea of semi-open sets. [2, 1], Arwini and Kornas introduced two
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types of generalizations of countability axioms. The primary type, known as D-countability axioms, is defined
using idea of dense sets. They demonstrated that D-separable, separable, and D-second countable spaces are
equal, and they provided several examples illustrating the relationships between D-countability axioms and
traditional countability axioms. The second class, termed R-countability axioms, utilizes the notion of regular
open sets for its definition. They explored the properties of R-countability axioms and proved that R-
countability axioms and traditional countability axioms coincide in regular spaces [12, 13 and 14].

In this newsletter, we introduce a new type of r-countability axiom through using idea of regular dense (r-dense)
units; the so referred to as D-r-countability axiom, which states that area is D-r-separable, D-r-first countable
space, D-r-Lindelof, D-r-6-compact, and D-r-second countable space. We explore the relationships among these
D-r-countability axioms and their connections to classical r-countability axioms as well as D-countability
axioms. Additionally, we characterize the topological hereditary properties of these spaces and investigate their
behavior in certain special contexts, such as regular and locally compact spaces.

2. D-R-SEPARABLE SPACES

Definition 2.1. [1] If the topological space Z contains a countable r-dense subset, then Z is called r-separable.
Definition 2.2. [2] ] If the topological space Z contains a dense separable subspace, it is called D-separable.
Definition 2.3. If the topological space Z contains an r-dense r-separable subspace, it is called D-r-separable.
Corollary 2.1. [2] If Z a topological space, then separable space and D-separable are equivalent

Theorem?2.1. If Z topological space, then these conditions are equivalently:
1. Z is r-separable.
2. Z is D-r-separable.

Proof

= Obvious.

< According to definition 2.3, N is r-dense r-separable subspace, meaning N contains a countable r-dense
subset M, and thus M is r-dense subset in Z. There fore Z is r-separable.

3. D-R-FIRST COUNTABLE SPACES

Definition 3.1. [1] A topological space Z is said to be r-first countable space if for every z € Z there is a
countable r-local base B, at z.

Definition 3.2. [2] If a topological space Z has first countable subspace that is dense, then Z is called D-first
countable.

Definition 3.3. If a topological space Z has an r-first countable subspace that is r-dense, then Z is called D-r-
first countable.

Examples 3.1.

1. If Z= R, and 1= {US R: U is countable}, then (R, ) is r-first countable and D-r-first countable but not D-
first countable.

2. If Z= R, and 1= discrete topology, then (R, 1) is D-r-first countable but not r-separable.
3. The topological space [0,w;] is D-first countable and D-r-first countable, but not r-first countable nor r-
separable

Propositions 3.1.

1. Any r-first countable space is D-r-first countable.
2. Any D-first countable space is D-r-first countable.

Proof:
1. Obvious.
2. Obvious, since any first countable space is r-first countable.

Theorem 3.1. Any D-r-first countable in regular space is D-first countable.
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Proof: Obvious, since Z is regular space.

) regular )
.D-r-first countable —— D-first countable
We summarize the relations between D-r-first countable, D-first countable and r-first countable in diagram 1.

r-first countable D-r-first countable

D-first countable
Diagram 1. Relations between D-r-first countable, D-first countable and r-first countable.

Theorem 3.2. Let Z be a D-r-first countable space and N be an r-open subset of Z, then N is D-r-first countable
subspace in Z.

Proof: Suppose that N € Z, such that N is an r-open subspace of Z, then Z has an r-first countable and r-dense
subspace M. First: we will show that NNM is D-r- first countable, i.e. NNM # ¢ and NNM < M, then NNM is
r- first countable. Now we will show that NNM is r-dense. Let U be a nonempty r-open subset in N, and N is
an r-open subset Z, then U is an r-open subset Z, which implies that UNM # ¢ and UN(NNM) # ¢, therefore,
NNM is r-dense, hence N is D-r- first countable.

Theorem 3.3. If N D-r-first countable subspace of Z, that is r-dence, then Z is D-r-first countable space.

Proof: If N is a D-r-first countable and r-dense subspace of Z, by definition 3.3. N contains a r-first countable r-
dense subspace V, which means that V is r-first countable and r-dense in Z. Therefore Z is D-r-first countable.

Corollary 3.1. Any r-separable space is D-r-first countable.
r-separable  —— = D-r-first countable
4. D-R-LINDELOF SPACES

Definition 4.1. [1] A topological space Z is called r-Lindel6f (or nearly Lindelof space) if for every r-open
cover of Z, there exists a countable subcover.

Definition 4.2. [2] If the topological space Z contains a dense Lindel6f subspace, then Z is called D- Lindel6f.

Definition 4.3. If the topological space Z contains an r-dense r-Lindelof subspace, then Z is called D-r-
Lindelof.

Examples 4.1.

1. The topological space [0,w,] is D-r- Lindel6f and r- Lindel&f but not r-separable.
2. The topological space [0,w,) is D-r-Lindel6f and r-Lindelof but not D-Lindel6f.
3. The sorgenfery plane R;xR, is D-r-Lindeléf and D-Lindel6f but not r-Lindel6f.
4. Let Z = R, and =={Z}U{VER: 1¢V}, then Z is not D-r- Lindel&f.

Proposition 4.1.

1. Any r-Lindelof space is D-r-Lindel6f.
2. Any D-Lindelof space is D-r-Lindel6f.

.Proof:
1. Obvious.
2. Obvious, since any Lindelof space is r-Lindel6f.
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Theorem 4.1. D-r-Lindel6f in regular space is D- Lindelof.

Proof: Obvious, since Z is regular space.

. regular .
D-r-Lindeléf —— D-Lindelof
We summarize the relations between D-r-Lindel6f, D-Lindelof and r-Lindelof in diagram 2.

r-Lindelof D-r-Lindelof

D-Lindelof
Diagram 2. Relations between D-r-Lindelof, D-Lindelof and r-Lindelof.

Theorem 4.2. Let Z be a D-r-Lindelof space and N be an r-clopen subset of Z, then N is D-r-Lindelof subspace
of Z.

Proof: : Assume N € Z, such that N is an r-clopen subspace of Z, then Z has an r-3- Lindel6f and r-dense
subspace M, First: we will show that NNM is D-r- Lindel6f, means that NNM # ¢ and NNM < M, thus NNM is
r-6- Lindel6f. Now we will show that NNM is r-dense. Let U be a nonempty r-open subset of N, and since N
be an r-open subset of Z, U is also an r-open subset of Z, which implies that UNM # ¢ and UN(NNM) # ¢,
therefore NNM is r-dense, so N is D-r-8- Lindelof.

Theorem 4.3. If N D-r- Lindelof subspace of Z, which is r-dence, then Z is a D-r-Lindel6f space.

Proof: If N is a D-r-Lindelof and r-dense subspace of Z, by definition 4.3. N contains a subspace that is r-
Lindelof and r-dense, thus V is an r-Lindel6f and is r-dense in Z.  Therefore Z is D-r- Lindel6f.

Corollary 4.1. Any r-separable space is D-r-Lindelof.
r-separable S D-r-Lindelof
5. D-R-8-COMPACT SPACES

Definition 5.1. [1] A topological space Z is called r-6-compact if it is the union of a countable many r-compact
subset of Z.

Definition 5.2. [1] If the topological space Z contains a dense d-compact subspace, then Z is called D- 6-
compact.

Definition 5.3 If the topological space Z contains an r-dense r-8-compact subspace, then Z is called D-r-5-
compact.

Examples 5.1.

1. The topological space [0,w,] is D-r-3-compact but not r-separable.

2. The sorgenfery line R; is D-r-3-compact and D-3-compact but not r-3-compact.

3.1fZ=R, and 1= {US R: U¢ is countable}, then (R, 1) is D-r-3-compact and r-3-compact but not D-5-
compact.

4.1f Z = R, and t= discrete topology, then (R, 1) is not D-r-3-compact.

Proposition 5.1.

1. Any r-3-compact space is D-r-6-compact.
2. Any D-3-compact space is D-r-3-compact.
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Proof:

1. Obvious.
2. Obvious, since any 8-compact space is r-3-compact.

Theorem 5.1. D-r-8-compact in regular space is D-3-compact.

Proof: Obvious, since Z is regular space.

regular

D-r-6-compact —— D-3-compact
We summarize the relations between D-r-3-compact, D-3-compact and r-3-compact in diagram 3.

-5- — D-r-5-
r-6-compact 2 D-r-5-compact

Diagram 3. Relations between D-r-3-compact, D-6-compact and r-6-compact.

D-6-compact

Theorem 5.2. Let Z be a D-r-6-compact space and N be an r-clopen subset of Z, then N is D-r-3-compact
subspace in Z.

Proof: Assume N € Z, such that N is an r-clopen subspace of Z, then Z has an r-3-compact and r-dense
subspace M, First: we will show that NNM is D-r-6-compact, i.e. NNM # ¢ and NNM c M, then NNM is r-3-
compact. Now we will show that NNM is r-dense. Let U be a nonempty r-open subset of N, and N be an r-
open subset of Z, then U is an r-open subset of Z, i.e. UNM # ¢ and UN(NNM) # ¢, then NNM is r-dense, so N
is D-r-6-compact.

Theorem 5.3. If N D-r-3-compact subspace of Z, that's r-dence, then Z is D-r-8-compact space.

Proof: If N is D-r-6-compact and r-dense subspace of Z, by definition 5.3. N has r-6-compact and r-dense
subspace V, then V is r-3-compact which is r-dense in Z. Thus Z is 3-compact.

Corollary 5.2.

1. Any r-separable space is D-r-6-compact.
2. Any D-r-8-compact space is D-r- Lindelof.

r-separable ———> D-r-3-compact
D-r-6-compact —=> D-r-Lindelof

Theorem 5.4. D-r-Lindel6f in regular locally compact T, space is D-3-compact.

Proof: From the definition of D-r- Lindelof space, N is r-dense r-Lindel6f subspace of Z, since Z is regular
(locally compact T,) space, then N is dense (8-compact) subset in Z, Thus Z is D-3-compact.

regular locally compact T,

D-r- Lindelof D-8-compact

Corollary 5.3. D-r-Lindelof in locally compact T, space is D-r-3-compact.

A ... locally compact T,
D-r- Lindelof —————— D-r-3-compact

6. D-R-SECOND COUNTABLE SPACES

Definition 6.1. [1] If topological space Z has a countable base, then Z is called r-second countable.
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Definition 6.2. [2] If the topological space Z contains dense second countable subspace, then Z is called D-
second countable.

Definition 6.3. If the topological space Z contains r-dense r-second countable subspace, then Z is called D-r-
second countable.

Corollary 6.1. Any D-r-second countable space is D-r-first countable (D-r- Lindelof ).

Example 6.1. In topological space [0,w,] is D-r-first countable and D-r-Lindel6f but not D-r-second
countable.

D-r-first countable
D-r-second countable

D-r-Lindelof
Diagram 4. Relations between D-r-second countable, D-r-first countabl and D-r- Lindel6f.

Corollary 6.2. If Z topological space, then these condition are equivalently:
1. Z is D-r-second countable space.

2. Zis r-separable space.

3. Z is D-r-separable space.

Proof:

1=2) Obvious

2=3) Obvious, by theorem 2.1.

3=1) By definition 2.3. Z has r-separable and r-dense subspace N, then M is a countable r-dense subset of N,
i.e. M is r-second countable and r-dense subset in Z. Hence Z is D-r second countable.

D-second countable <&———  r-separable = <——> D-r-separable

Conclusion

In this paper, using the idea of r-dense sets, we have introduced a new concept of r-countability, the so called
D-r-countability axiom. We have shown that these spaces are weaker than the D-countability axiom (r-
countability axiom). We have shown that the D-countability axiom (r-countability axiom) is D-r-countability,
but not vice versa. Furthermore, we have shown that there is no relationship between the D-countability axiom
and r-countability. We have shown that r-separable spaces, D-r-separable spaces and D-r-second countable
spaces are equivalent. Furthermore, we have shown that the D-r-countability axioms and D-countability axioms
are equivalent when the space is regular. We have explained the relationship between these spaces; every
separable space is D-r-first countable (D-r- Lindelof D-6-r-compact), every D-r-8-compact space is D-r-
Lindel6f, and in (regular) locally compact T, spaces, D-R-Lindel6f space is D-r-6-compact (D-6-compact).

. R-Clopen subspace of D-r- Lindel6f (D-r- §-compact) is D-r-Lindelf (D-r-6-compact).

. An R-Open subspace of D-r-first countable is D-r-first countable.

R-Countability axioms
D-R-Countability axioms
D-Countability axioms

Diagram 5. Relations between D-r-countability axiom, D-countability axiom and r-countability axiom.
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